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A B S T R A C T

Statistical learning relies on detecting the frequency of co-occurrences of items and has been proposed to be
crucial for a variety of learning problems, notably to learn and memorize words from fluent speech. Endress and
Johnson (2021) (hereafter EJ) recently showed that such results can be explained based on simple memory-less
correlational learning mechanisms such as Hebbian Learning. Tovar and Westermann (2022) (hereafter TW)
reproduced these results with a different Hebbian model. We show that the main differences between the
models are whether temporal decay acts on both the connection weights and the activations (in TW) or only
on the activations (in EJ), and whether interference affects weights (in TW) or activations (in EJ). Given that
weights and activations are linked through the Hebbian learning rule, the networks behave similarly. However,
in contrast to TW, we do not believe that neurophysiological data are relevant to adjudicate between abstract
psychological models with little biological detail. Taken together, both models show that different memory-
less correlational learning mechanisms provide a parsimonious account of Statistical Learning results. They
are consistent with evidence that Statistical Learning might not allow learners to learn and retain words, and
Statistical Learning might support predictive processing instead.
Statistical learning relies on detecting the frequency of co-
occurrences of items, and has been proposed to be crucial for a variety
of learning problems (e.g. Aslin, Saffran, & Newport, 1998; Kirkham,
Slemmer, & Johnson, 2002; Morgan, Fogel, Nair, & Patel, 2019; Saffran,
Aslin, & Newport, 1996; Saffran & Griepentrog, 2001; Saffran, Newport,
& Aslin, 1996; Stalinski & Schellenberg, 2010; Turk-Browne & Scholl,
2009; Verosky & Morgan, 2021), notably learning words from fluent
speech (Aslin & Newport, 2012; Aslin et al., 1998; Saffran, Aslin,
& Newport, 1996; Saffran, Newport, & Aslin, 1996). We recently
showed that such results can be explained based on simple correlational
learning mechanisms such as Hebbian Learning (Endress & Johnson,
2021) (hereafter EJ). Tovar and Westermann (2022) (hereafter TW)

✩ The code used in this article is available at https://github.com/aendress/tp_model_reply_to_tw and https://doi.org/10.25383/city.20054993. This research
was supported by NIH, United States of America grant R01-HD073535 to SPJ.
∗ Corresponding author.
E-mail address: ansgar.endress.1@city.ac.uk (A.D. Endress).

1 Historically, many authors have stressed the importance of correlational learning mechanisms (if not exactly Hebb’s rule), from Hume’s 1739/2003 theory
of causation to collocation detection in natural language processing (Manning & Schütze, 1999), though other authors questioned whether what appears to
be correlational learning (e.g., conditioning) really reflects correlational learning mechanisms (Gallistel & Gibbon, 2000). Our main assumption is that learning
mechanisms that show properties of correlational learning (e.g., the effects of Hebbian learning) are psychologically plausible even though there are many other
methods of detecting co-occurrences.

reproduced these results with a slightly different model (with temporal
decay acting on both the connection weights and the activations,
rather than on only the activations, and interference affecting weights
rather than activations), and offering different interpretations of some
network parameters (e.g., conceiving of forgetting as decay).

Here, we first stress the common theoretical implications of both
models: While Statistical Learning is often assumed to help learners
learn (and thus memorize) words from fluent speech (e.g. Erickson,
Thiessen, & Estes, 2014; Graf-Estes, Evans, Alibali, & Saffran, 2007;
Isbilen, McCauley, Kidd, & Christiansen, 2020; Karaman & Hay, 2018;
Shoaib, Wang, Hay, & Lany, 2018), results from the tasks typically
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used to explore Statistical Learning can be explained by a memory-
less correlational learning model. As a result, Statistical Learning might
be more useful for predictive processing than for learning words per
e (e.g. Endress & de Seyssel; Morgan et al., 2019; Sherman & Turk-
rowne, 2020; Turk-Browne, Scholl, Johnson, & Chun, 2010; Verosky

Morgan, 2021). Following this, we briefly discus the differences
etween EJ’s and TW’s models. As already argued by EJ, we agree
hat different implementations of correlational learning are likely to
esult in fairly similar results.1 However, we also show that, contrary
o TW’s characterization of their model, activation decay is critical
o their model’s performance, and argue that models of psychological
henomena should be evaluated by their psychological predictions
ather than by reference to their putative ‘‘biological plausibility’’ when
either model includes biophysical attributes.

. A memory-less interpretation of statistical learning

One of the primary motivations of Statistical Learning is that it
ight allow learners to extract (and memorize) words from fluent

peech (e.g. Aslin & Newport, 2012; Aslin et al., 1998; Saffran, Aslin,
Newport, 1996; Saffran, Newport, & Aslin, 1996). Speech is often

hought to be a continuous signal (but see Brentari, González, Seidl,
Wilbur, 2011; Christophe, Mehler, & Sebastian-Galles, 2001; En-

ress & Hauser, 2010; Johnson & Jusczyk, 2001; Johnson & Seidl,
009; Pilon, 1981; Shukla, Nespor, & Mehler, 2007; Shukla, White,
Aslin, 2011). As a result, to acquire any word, learners first need

o learn where words start and where they end. To this end, they
ight use Transitional Probabilities (TPs) among syllables, that is, the

onditional probability of a syllable 𝜎𝑖+1 given a preceding syllable
𝑖, 𝑃 (𝜎𝑖𝜎𝑖+1)∕𝑃 (𝜎𝑖). Unpredictable transitions might indicate a word
oundary, while relatively predictable transitions are likely located
nside words. Humans are sensitive to TPs (Aslin et al., 1998; Kirkham
t al., 2002; Morgan et al., 2019; Saffran, Aslin, & Newport, 1996;
affran & Griepentrog, 2001; Saffran, Newport, & Aslin, 1996; Stalinski
Schellenberg, 2010; Turk-Browne & Scholl, 2009), and might use this

ensitivity to memorize words (e.g. Erickson et al., 2014; Graf-Estes
t al., 2007; Isbilen et al., 2020; Karaman & Hay, 2018; Shoaib et al.,
018).

However, the evidence that Statistical Learning leads to memory
or words is mixed at best (see Endress, Slone, & Johnson, 2020 for a
ritical review). For example, when exposed to statistically structured
equences, participants are sometimes more familiar with high-TP items
han with low-TP items, even when they have never encountered either
f them and thus could not have memorized them (because the items
re played backwards with respect to the familiarization sequence; En-
ress & Wood, 2011; Jones & Pashler, 2007; Turk-Browne & Scholl,
009). In other cases, participants are more familiar with high-TP
tems they have never heard or seen than with low-TP items they
ave encountered (Endress & Langus, 2017; Endress & Mehler, 2009).
urther, when instructed to repeat back the items they remember
rom a statistically structured familiarization sequences, participants
re unable to do so even when they learned the statistical structure
f the stream (Endress & de Seyssel).

Such results thus suggest that Statistical Learning abilities do not
ecessarily support the formation of declarative memories for words.
his interpretation mirrors earlier demonstrations of dissociations be-
ween Statistical Learning and declarative memory (e.g. Cohen &
quire, 1980; Finn et al., 2016; Graf & Mandler, 1984; Poldrack et al.,
001; Squire, 1992), and suggests that Statistical Learning might be
ore useful for predictive processing rather than declarative memory

ormation (e.g. Endress & de Seyssel; Morgan et al., 2019; Sherman
2

Turk-Browne, 2020; Turk-Browne et al., 2010; Verosky & Morgan, f
021).2 To the extent that Statistical Learning has a computational
unction (in Marr and Nishihara’s 1992 sense, and is not a spandrel,
ould, Lewontin, Maynard Smith, & Holliday, 1979), we thus surmise

hat its function is the prediction of future events.
Both EJ’s and TW’s models are consistent with this view. EJ simu-

ated the results of a number of Statistical Learning results with a fully
onnected network where the strength of excitatory connections among
eurons was tuned by Hebbian learning. That is, if two neurons are
ctive simultaneously, their connection becomes strengthened (‘‘what
ires together wires together’’). The network also comprised inhibitory
onnections among neurons. Further, the network had a ‘‘forgetting’’
echanism, where activity decayed as time passed. After familiariza-

ion with a speech stream, the network was tested by recording the
otal activation when presented with different types of test items.

The basic result was that this fairly generic network accounted for a
umber of Statistical Learning results. Critically, given that all learning
esided in the connection strengths, it could do so without any memory
epresentations at all. In fact, just as in human participants (Endress &
angus, 2017; Endress & Mehler, 2009), the network activation was
etermined by the associative strength of the syllables in an item,
rrespective of whether the network had encountered the item or not.
s a result, the network had no memory representation of either item

or one would need to conclude that the network remembered items it
as never encountered).

EJ also found that, to account for these Statistical Learning results,
he forgetting rate needed to be reasonable. Rather unsurprisingly, if
orgetting was so fast that neurons were never active together, no
earning ensued. Conversely, if forgetting was so slow that all neurons
ere active simultaneously, all neurons formed connections, making

hese indiscriminate connections useless as an indicator of learning.

. Differences between EJ’s and TW’s model

TW reproduced these results in a similar network, confirming that
asic Hebbian learning mechanisms can explain Statistical Learning
esults, to some extent independently of how they are implemented.
s far as we can see, there are four main differences between TW’s and
J’s models. First, TW take issue with our characterization of decay as
orgetting. Second, TW stress the importance of spreading activation.
hird, TW evaluate learning by inspecting connections rather than
ctivations. Fourth, instead of including separate inhibitory and de-
ay/forgetting components that affect activations (and thus indirectly
onnection weights through the Hebbian learning rule), their model
ses a modified Hebbian learning rule (with an additional parameter)
here decay/forgetting affects weights (and thus indirectly activa-

ions); this learning rule also comprises a thresholding mechanism that
resumably mimics the effects of mutual inhibition.

.1. Forgetting vs. decay

Regarding the interpretation of EJ’s ‘‘forgetting’’ parameter, TW
‘argue that [interpreting decay as forgetting] may be a misleading
nterpretation. Activation values from external stimuli in both artificial
nd biological networks are non-persistent but are constantly updated
n response to changes in the environment (Huber & O’Reilly, 2003)’’.

e agree that, in our specific implementation, decay would also be a
easonable description of the phenomenon we tried to capture. That

2 Under the premise that Statistical Learning is used for word learning,
he finding that Statistical Learning might not require declarative memory
ight lead to the conclusion that word learning does not require declarative
emory either. However, given the prima facie plausibility of the view that
ords need to be retrieved from memory (at least for production), it seems
ore plausible that declarative memory is involved in word learning, and that

tatistical Learning abilities might thus not support the formation of memories

or words. We thank an anonymous reviewer for suggesting this possibility.
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said, given the controversy over whether decay plays a role in for-
getting (see below), we believe that forgetting is a theoretically more
neutral term, especially because the same phenomenon can likely be
captured by manipulating the interference parameter rather than the
decay parameter (see below). However, we would question to what
extent results from single neuron recordings are relevant for psycho-
logical models that are not particularly plausible biologically to begin
with; for example both EJ’s and TW’s ‘‘neurons’’ code for speaker-
independent, phonological representations of syllables, which would
presumably be encoded by some fairly abstract population code in
actual brains (Pouget, Dayan, & Zemel, 2000). Further, while decay
has certainly been widely documented, so has persistent neural activity,
which exists in various brain areas and taxa (e.g. Major & Tank, 2004).
As a result, neurophysiological findings may not be informative about
psychological theories.

In fact, the question of whether time-based decay exists in mem-
ory is a controversial one in cognitive psychology. Under some cir-
cumstances, humans can remember thousands of items for hours or
weeks (Brady, Konkle, Alvarez, & Oliva, 2008; Standing, 1973); under
other circumstances, very similar pictures disappear from memory after
a few seconds but can be reviewed through repeated exposure (Endress
& Potter, 2014; Pertzov & Avidan, 2009; Thunell & Thorpe, 2019).
Further, it is controversial whether there is any decay in Short-Term
Memory at all, or whether all decreases in memory are due to inter-
ference (e.g. Baddeley & Scott, 1971; Berman, Jonides, & Lewis, 2009;
Lewandowsky, Oberauer, & Brown, 2009; Nairne, Whiteman, & Kelley,
1999). We are thus open to different psychological interpretations of
the forgetting parameter, and EJ already acknowledged the possibility
that the effects of their forgetting parameter could likely be mimicked
by tuning inhibition (see below).

In contrast, although TW argue that their ‘‘simulation results . . .
challenge E&J’s notion of activation decay as the key ingredient for
Hebbian statistical learning’’, forgetting/decay is critical to their model.
They use decay in two places. First, the activation of each input is
maintained only for two time steps (at 90% for the second time step);
given that the current input is likely the strongest activation at each
time step, the effects are similar to a global forgetting parameter.
Second, TW consider only activation greater than a certain threshold.
While the effect of the latter seems to be a reduced overall magnitude
of the weights, the former is critical for the results. To illustrate this
fact, we exposed the network to the familiarization stream from Saffran,
Aslin, and Newport’s 1996 Experiment 2, and then recorded the weights
in high-TP items (‘‘words’’) and low-TP items (part-words, of BC:D and
C:DE type, a difference that is irrelevant for the current purposes). We
ran 1000 simulations with three version of TW’s model: With the origi-
nal decay function from TW (‘‘Standard’’ in Fig. 1), no forgetting at all
(i.e., the input to each neurons was the cumulative sum of prior inputs;
‘‘Never’’ in Fig. 1) and immediate forgetting (i.e., the activation decays
immediately after presentation; ‘‘Immediate’’ in Fig. 1). As shown in
Fig. 1, the network discriminated between words and part-words only
using TW’s decay function; as in EJ’s simulations, all weights reach
the maximum of 1.0 in the absence of decay, and reached zero with
immediate forgetting. A suitably chosen decay parameter is thus crucial
to TW’s model. Be that as it might, we believe that the merits of psycho-
logical models should be evaluated by their empirical adequacy, and
links between psychological parameters and neurobiological findings
should be investigated empirically.

2.2. The role of spreading activation

TW stress the importance for spreading activation for network
performance. We certainly agree, and, in their Section 2, EJ explained
the role of spreading activation in detail. In fact, we suggested that
spreading activation might be a more parsimonious account of previous
claims that Statistical Learning might lead to word-like memory rep-
3

resentations (see Erickson et al., 2014; Graf-Estes et al., 2007; Isbilen d
et al., 2020; Karaman & Hay, 2018; Shoaib et al., 2018 vs. Endress &
Langus, 2017; Endress et al., 2020).

Given the importance of spreading activation, it is surprising that
TW evaluate their model by inspecting connections weights rather
than by measuring activations. In fact, even in a network with uni-
form connections and no learning, it is hard to describe the network
dynamics mathematically without resorting to simulation (Endress &
Szabó, 2020). Given that, in TW’s model, interference and decay act
on weights rather than activations, this problem might be somewhat
reduced in their model. Still, just relying on the pattern of weights, it is
hard to evaluate the dynamic interplay of first and higher order associ-
ations or the dynamic aspects of statical learning such as those revealed
by electrophysiological recordings (Endress & Fló, in preparation).

2.3. The effects of different learning rules

2.3.1. One vs. two component learning rules
The most critical difference between EJ and TWs models is the

learning rule. TW’s learning rule has two components. First, all weights
undergo decay. This decay is proportional to the current weight and the
product of the activations connected by that weight, that is

𝛥Decay𝑊𝐴𝐵 ∝ −𝑊𝐴𝐵 × activation𝐴 × activation𝐵 ,

here 𝐴 and 𝐵 are two neurons. However, given that, even in the
imple Hebbian learning rule

𝑊𝐴𝐵 ∝ activation𝐴 × activation𝐵

he weight change is proportional to product of the activations, the
ffects of decay on learning will be very similar irrespective of whether
ecay originates from weights, activations or, as in TW’s model, both.
owever, in the absence of targeted experiments investigating the
mpirical adequacy of weight-based vs activation-based decay, the key
esult is that both formalisms account for Statistical Learning results in
he absence of a memory mechanism.

The second component of TW’s learning rule is the strengthening
f associations according to the simple Hebbian learning rule above.
ritically, however, TW’s model strengthens connections only when the
roduct of the activation exceeds an arbitrary threshold (activation𝐴 ×
ctivation𝐵 > 𝜃). However, the effect of this thresholding is similar to
nhibitory connections. To see why this is the case, consider two pairs of
eurons. The activations in each pair are roughly similar to each other,
ut the activation in the first pair is somewhat larger than in the second
air (i.e, activation𝐴 ≈ activation𝐵 > activation𝐶 ≈ activation𝐷). If
here is inhibition, the first pair will reduce the activation of the second
air as long as the inhibitory input exceeds their excitatory input
though the difference does not necessarily disappear; Endress & Szabó,
020). Given that weight changes are proportional to the product of the
orresponding activations, connections between neurons with greater
oactivation will be strengthened to a greater extent, irrespective of
hether this is implemented through inhibitory connections or through
n co-activation-based threshold for learning.

Again, we believe that targeted psychological experiments are nec-
ssary to gauge the empirical adequacy of activation-based decay and
nhibition (as in EJ) vs. weight-based decay and inhibition (as in TW).
n fact, there is evidence for both kinds of processes. One the one
and, the type of lateral, activation-based inhibition assumed in EJ
as been proposed as a psychological mechanism for phenomena from
erception to attention to response inhibition (e.g. Desimone & Duncan,
995; Hampshire & Sharp, 2015). On the other hand, to the extent
hat knowledge of TPs resides in connection weights, the finding that
nowledge of TPs is forgotten after a few minutes (e.g. Karaman & Hay,
018; Vlach & DeBrock, 2019) suggests that ‘‘weights’’ can be forgotten
ver time, which is consistent with TW’s proposal of weight-based
ecay (though this forgetting might still occur through interference or
ecay).
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Fig. 1. Average connection weights of the test items in a simulation of Saffran, Aslin, and Newport’s 1996 Experiment 2, using TW’s model. (Left) Simulations using decay
parameters from TW’s model. (Middle) Simulations with no activation decay. (Right) Simulations with immediate decay. High-TP items (words) are discriminated from low-TP
items (part-words of different types) only with a suitable decay function. With no decay, all weights are maximal; with immediate forgetting, no connections are formed.
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For the current purposes, we just assume that some normalization
mechanism keeps activations at a reasonable level, and believe that
the question of whether normalization occurs through weight decay,
weight interference or lateral inhibition is best answered through ex-
perimental rather than computational investigations. To the extent
that biological plausibility is relevant for psychological models, the
ubiquity of lateral inhibition across domains and taxa certainly suggest
that activation-based inhibition is no less plausible than weight-based
inhibition.

2.3.2. Connection weights do not grow excessively in the absence of weight
forgetting

TW justified their two component learning rule in part by arguing
that ‘‘it is not clear their [EJ’s] model prevents excessive growth of
connections’’. However, it is easy to see from EJ’s Hebbian learning
rule that the final weight of the connection between two neurons
after 𝑡 time steps is proportional to the average coactivation of the
neurons, 𝑊𝐴𝐵(𝑡) ∝ 𝑡 × ⟨activation𝐴 × activation𝐵⟩ (for 𝑊𝐴𝐵(0) = 0).

s a result, if the activations remain in a reasonable range, so will
he weights. This is confirmed when examining the connection weights
fter familiarization with a stream modeled after Saffran, Aslin, and
ewport’s 1996 Experiment 2. As shown in Fig. 2, connection weights
iverge for slow decay rates of up to .2, but generally stay below
r around 1 for faster decay rates. In other words, weights stay in a
easonable range for decay rates that led to learning in EJ’s simulations;
or decay rates that were too slow for learning to occur, weights
iverge as well. This confirms our point above that qualitatively similar
esults can be achieved by controlling weights (and thus indirectly
ctivations, as in TW’s simulations) or by controlling activations (and
hus indirectly weights, as in EJ’s simulations).

.4. Decay vs. interference

TW questioned EJ’s rationale for not varying their interference
arameter. However, and as mentioned above, EJ argued that their

‘interference parameter might well mimic the role of forgetting’’, and
hus simply sought to limit the number of moving parts in their model.
o see why this is the case, consider a network of 𝑁 neurons that
eceive external stimulation in a regular sequence. In the absence noise,
he activation change between times 𝑡 and 𝑡+1 is given by (exponential)
ecay (first term), spreading activation (second term), inhibition (third
erm) and external stimulation (fourth term).

𝑖(𝑡 + 1) − 𝑥𝑖(𝑡) = −𝜆𝑎𝑥𝑖(𝑡) + 𝛼
∑

𝑗≠𝑖
𝑤𝑖𝑗𝐹 (𝑥𝑗 ) − 𝛽

∑

𝑗≠𝑖
𝐹 (𝑥𝑗 ) + 𝐼(𝑡) (1)

To see the relationship between decay and inhibition, we assume
that excitatory connectivity is relatively sparse, and partition the neu-
rons into a set of 𝐾 neurons with excitatory connections with target
4

f

neuron 𝑖, and 𝑁−𝐾 neurons with negligible excitatory input to neuron
𝑖.

𝑥𝑖(𝑡 + 1) − 𝑥𝑖(𝑡) = − 𝜆𝑎𝑥𝑖(𝑡) + 𝛼
𝐾
∑

𝑗=1,𝑗≠𝑖
𝑤𝑖𝑗𝐹 (𝑥𝑗 )

− 𝛽
𝐾
∑

𝑗=1,𝑗≠𝑖
𝐹 (𝑥𝑗 ) − 𝛽

𝑁
∑

𝑗=𝐾+1,𝑗≠𝑖
𝐹 (𝑥𝑗 )

+ 𝐼(𝑡)

(2)

In the absence of external stimulation, the 𝑁 − 𝐾 neurons not
providing excitatory input to 𝑖 will provide periodic inhibitory input
(Endress & Fló, in preparation) that is generally unrelated to the acti-
vation of 𝑖. Averaged across time, this input thus mimics the effect of
linear (rather than exponential) decay. For the 𝐾 neurons that provide
excitatory input to 𝑖, their excitatory input is proportional to their
inhibitory input. As the activation of 𝑖 is also an increasing function
of this excitatory input, the inhibition might thus mimic exponential
decay (though the specific functional form is more complex). Further,
given that 𝑖 is presumably most active when closely associated neurons
are active as well (and assuming sparse activations), this exponential-
like inhibition is likely the dominant inhibitory input when 𝑖 has
noteworthy activation.

In the presence of external stimulation, the excitatory input to 𝑖
rom other neurons is no longer related to 𝑖’s activation. However,
iven the symmetry of the Hebbian learning rule, 𝑖 will also excite the
eurons it has excitatory connections with. As a result, these neurons
ill again provide inhibitory input that is an increasing function of 𝑖’s

activation, albeit with a time-lag. Consequently, the effects of inhibition
and time-based decay can likely mimic one another. Critically, how-
ever, given that EJ’s objective was to make the conceptual point that
Statistical Learning results can be reproduced by a simple, memory-
less correlational learning mechanism, they did not explore alternative
implementations of this idea. Be that as it may, TW’s model confirms
that EJ’s results can be reproduced with different implementations.

3. Conclusions

In sum, both EJ and TW show that a memory-less correlational
learning mechanism can account for results from Statistical Learning
studies, despite differences in implementation, irrespective of whether
decay and inhibition affect activations or weights.3 As a result, to the
extent that Statistical Learning supports declarative memory formation
for words, relevant evidence is still required.

3 A stronger argument for the implementation independence of our con-
lusions would rely on analytic results for classes of activation functions and
earning rules. However, given that mathematical treatments of neural network
roperties (e.g., using statistical mechanics) usually assume some learning
ule (e.g. Amit, 1989; Hopfield, 1982; Huang, 2021; Storkey, 1997), and that
n analytic derivation of the asymptotic network behavior is challenging even

or a simplified version of the current model with less complex stimuli (Endress
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