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Abstract

Learning often requires splitting continuous signals into recurring units, such as the

discrete words constituting fluent speech. A prominent candidate mechanism involves

statistical learning of co-occurrence statistics like transitional probabilities (TPs),

reflecting the idea that items from the same unit (e.g., syllables within a word) predict

each other better than items from different units. TP computations are surprisingly

flexible and sophisticated. Humans are sensitive to forward and backward TPs, compute

TPs between adjacent items and longer-distance items, and even recognize TPs in novel

units. We explain these hallmarks of statistical learning with a simple model with

tunable excitatory connections and inhibitory interactions controlling the overall

activation. With weak forgetting, activations are long-lasting, yielding associations

among all items; with strong forgetting, no associations ensue as activations do not

outlast stimuli; with intermediate forgetting, the network reproduces the hallmarks

above. Forgetting thus is a key determinant of these sophisticated learning abilities.

Keywords: Statistical Learning; Implicit Learning; Transitional Probabilities;

Neural Networks; Chunking
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When forgetting fosters learning: A neural network model for Statistical Learning

1 Introduction

Observers often need to segment continuous signals into discrete recurring units,

from the recognition of meaningful actions, where observers need to identify

meaningful units in the continuous movement of other agents (Newtson, 1973; Zacks &

Swallow, 2007) to language acquisition, where learners need to find out where words

start and where they end in fluent speech (Aslin, Saffran, & Newport, 1998; Saffran,

Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996). In the context of language

acquisition, this challenge is called the segmentation problem (Aslin et al., 1998;

Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996) and is clearly one of

the first challenges infants face, even before they can acquire the meaning of any word.

A prominent set of mechanisms for solving the segmentation problem relies on

co-occurrence statistics of various sorts. These mechanisms track the predictability of

items such as syllables. For example, predicting the next syllable after “the” is much

harder than predicting the next syllable after “whis”, because “the” can be followed by

any noun while there are few possible continuations after “whis” (e.g., whiskey, whisker,

. . . ). More formally, these predictive relationships have been quantified using

Transitional Probabilities (TPs), i.e., the conditional probability of a syllable σ2

following another syllable σ1 P (σ2|σ1).

After the initial discovery that infants and other animals are sensitive to TPs in

general (Aslin et al., 1998; Chen & Ten Cate, 2015; Creel, Newport, & Aslin, 2004;

Endress, 2010; Endress & Wood, 2011; Fiser & Aslin, 2002a; Hauser, Newport, &

Aslin, 2001; Saffran, Newport, & Aslin, 1996; Saffran, Aslin, & Newport, 1996; Saffran,

Johnson, Aslin, & Newport, 1999; Saffran & Griepentrog, 2001; Sohail & Johnson,
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2016; Toro & Trobalón, 2005; Turk-Browne & Scholl, 2009), further research revealed

the astonishing sophistication of these abilities.

For example, adults and infants can track backwards TPs (Endress & Wood, 2011;

Perruchet & Desaulty, 2008; Pelucchi, Hay, & Saffran, 2009; Turk-Browne & Scholl,

2009) and discriminate high-TP items from low-TP items when the test-items are played

in reverse order with respect to the familiarization (i.e., they readily recognize the item

CBA after familiarization with ABC; Endress & Wood, 2011; Turk-Browne & Scholl,

2009). Learners can also track TPs between non-adjacent items (Endress, 2010; Endress

& Wood, 2011; Peña, Bonatti, Nespor, & Mehler, 2002), though in some experiments,

additional manipulations were required (Creel et al., 2004; Pacton & Perruchet, 2008).

Both abilities are critical for language acquisition, because backwards TPs are in some

languages more informative than forward TPs (e.g., Gervain & Guevara Erra, 2012) and

because, across languages, non-adjacent dependencies abound (e.g., Newport & Aslin,

2004).

Learners prefer high-TP items to low-TP items even when the items are equated

for frequency of occurrence (Aslin et al., 1998), and even when they had heard or seen

only the low-TP items but not the high-TP items (Endress & Mehler, 2009; Endress &

Langus, 2017; Perruchet & Poulin-Charronnat, 2012).

How can we make sense of these data? While a variety of computational models

have been proposed to explain word segmentation (e.g., Batchelder, 2002; Brent &

Cartwright, 1996; Christiansen, Allen, & Seidenberg, 1998; Frank, Goldwater, Griffiths,

& Tenenbaum, 2010; Orbán, Fiser, Aslin, & Lengyel, 2008; Perruchet & Vinter, 1998),

none of the extant models captures the sophistication of statistical learning abilities in

their entirety.
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For example, network models (such as Simple Recurrent Networks; Elman, 1990)

are directional, and thus do not account for backward TPs, while their sensitivity to

non-adjacent TPs will likely depend on the network parameters. “Chunking models”

that store items in memory (Batchelder, 2002; Perruchet & Vinter, 1998) and

information-theoretic models (or related Bayesian models) that minimize storage space

in memory (Brent & Cartwright, 1996; Orbán et al., 2008) will not track (adjacent or

non-adjacent) TPs in unattested items, and thus do not account for the entire range of

data either.

Here, we suggest that an ability to succeed in the crucial test cases above follows

naturally from a correlational learning mechanism such as Hebbian learning.

Specifically, we assume that each item (syllable, visual shape, . . . ) is represented by

some population of neurons, and that participants are exposed to some sequence

ABCD. . . , where each letter stands for an item. If the activation of such a population

decays more slowly than the duration of an item, two adjacent items will be active

simultaneously, and thus form an association. For example, if the representation of A is

still active while B occurs, these representations will form an association. But if the

representation of A is still active while C occurs, A and C will form an association as

well even though they are not temporarily adjacent (see also Endress, 2010).

Importantly, these associations are not directional: just as presenting A will activate B,

presenting B will activate A.

Here, we provide a computational implementation of this model. The model is a

fairly generic network, based on a widely used model of saliency maps in the parietal

cortex to which we added a Hebbian learning component. We use this network

architecture as it is fairly generic and widely used, but have no particular claims about

attentional involvement in TP computations (but see e.g. Toro, Sinnett, & Soto-Faraco,
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2005).

Specifically, the network consists of units that stand for populations of neurons

encoding the items. Excitatory connections between units follow a Hebbian learning

rule. To keep the total activation in the network at a reasonable level, we also added

mutual interference among the units; the inhibitory interactions do not undergo learning.

Further specifics of the model can be found in Supplementary Information A.

2 Computational principles

We first illustrate the computational principles of the model by running a

simulation with a stream consisting of 9 symbols A, B, . . . I that are arranged into three

three-item units ABC, DEF and GHI. Units were concatenated in random order so that

each unit occurred 100 times.

Figure 1 shows the activation in response to the presentation of each item when

the unit ABC is presented for the first time (a) and for the last time (b) as well as the

weights between the underlying items after the last presentation.

Figure 1a shows that the A unit is still active when the C item is presented. As a

result, we would expect a strong and reciprocal associative link between A and B and a

weaker one between A and C, which is just what Figure 1c shows.

Comparing Figures 1a and b reveals that the activation of A is more reduced at its

last occurrence. This is due to the inhibitory input from other units: On the first

occurrence, no other units are active yet, and activation of A can only be reduced through

inhibition when other units are active. In contrast, the activations of B and C do not

seem reduced between Figures 1 a and c. This is because they receive excitatory input
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from A (and B in the case of C) which compensates the inhibitory input from other units.

We will now use these computational principles to illustrate some of the critical

results in the statistical learning literature.

3 Results

3.1 High- vs. low-TP items, tested forwards and backwards

We first explore the discrimination of high vs. low TP items after exposure to a

sequence of 4 units of 3 items each (e.g., 4 words of 3 syllables). These units are

randomly concatenated into a familiarization stream so that each unit occurs 100 times.

We then present the network with test-items (see below) and record the total network

activation while each item is presented. We hypothesize that the total activation provides

us with a measure of the network’s familiarity with the unit.1

This cycle of familiarization and test will be repeated 100 times, representing 100

participants.

While keeping the parameters for self-excitation and mutual inhibition constant (α

and β in Supplementary Material A), we used forgetting rates (λa in Supplementary

Material A) between 0 and 1. As forgetting in our model is exponential, a forgetting rate

of zero means no forgetting, a forgetting rate of 1 implies the complete disappearance of

activation on the next time step (unless a population of neurons receives excitatory input

1 We also report simulations where we consider only those network activation in the items that are part of
the current test-item rather than the global network activation. For example, when an unit ABC is
presented, we assess the network’s familiarity with the items by recording the activation in A, B and C –
rather than the activation in all items. Intuitively, one would expect the results to be similar, as the active
items will mainly be those that have been stimulated. These simulations are reported in Supplementary
Information C.
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from other populations), and a forgetting rate of .5 implies the decay of half of the

activation.

3.1.1 Adjacent and non-adjacent forward TPs. We first evaluate the

network’s sensitivity to forward TPs among adjacent and non-adjacent items. These

simulations are inspired by the paradigm by Saffran, Aslin, and Newport (1996) and

Saffran, Newport, and Aslin (1996), among many others. After familiarization as

described above, the network will be tested on units such as ABC and “part-units.”

Part-units are created either by taking the last two items from one unit and the first item

from the next unit (e.g., BC:D, where the colon indicates the former unit boundary but is

not present in the stimuli) or by taking the last item from one unit and the first two items

from the next unit (e.g., C:DE). As a result, part-units have occurred during the

familiarization sequence but straddled a unit boundary and thus have relatively weak

TPs. We thus expect the network to be more familiar with units than with part-units.

The demonstration of a sensitivity to TPs among non-adjacent items is inspired by

the paradigm by Endress and Bonatti (2007). Specifically, our high non-adjacent TP

test-items take their first and the last item from the same unit, but the middle item from a

different unit (e.g., AGC, where A and C come from the unit ABC, while G was the first

item of the unit GHI). By analogy to Endress and Bonatti (2007), we call these items

rule-units.

Our low non-adjacent TP test-items take their first and the last items from

different units and take the middle item from yet another unit (e.g., AGF, where A is the

first item from ABC, F is the last item from DEF, while G was the first item of the unit

GHI). By analogy to Endress and Bonatti (2007), we call these items class-units. The

critical difference between the rule-units and the class-units is that the TP between the

first and the last item is 1.0 in rule-units and 0 in class-units.
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We will also test a second rule-unit vs. class-unit contrast where the middle item is

novel and did not appear in the familiarization stream (e.g., AXC vs. AXF, where X has

never appeared in the familiarization stream).

For each comparison, we will create normalized difference scores to evaluate the

model performance:

d = Item1 − Item2

Item1 + Item2

We then evaluate these difference scores against the chance level of zero using

Wilcoxon tests. An alternative evaluation metric is to count the number of simulations

(each representing a participant) preferring the target items, and to evaluate this count

using a binomial test. With 100 simulations per parameter set, performance is

significantly different from the chance level of 50% if at least 61 % of the simulations

show a preference for the target items.

The results are shown in Figure 2a and 2b. For low forgetting rates (0 and 0.2), the

network fails for all comparisons. This is unsurprising as low forgetting rates mean that

all items remain active for many time steps, so that the network indiscriminately forms

associations among virtually all items, and thus fails to track the statistical structure of

the familiarization stream. Likewise, for the maximum forgetting rate, the network fails

on all discriminations as well; this is again unsurprising, as no associations can be

formed among items if forgetting is so strong that there is no overlap in activation

between items.

Critically, for intermediate forgetting rates, the network performed well above

chance for all comparisons. It performed somewhat better when contrasting units with
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C:DE part-units, as has been observed in human participants by Fiser and Aslin (2002b).

Importantly, however, all difference scores are clearly above chance, and between 83%

and 100% of the simulations yielded positive difference scores (though only 63%

yielded positive difference scores for forgetting rate .6 and non-adjacent TP

comparisons). Further, adjacent TPs support higher forgetting rates than non-adjacent

TPs, because activations need to last longer for non-adjacent TPs to be formed; while a

sensitivity to TPs among adjacent items is maintained for a forgetting rate of 0.8, there

is no such sensitivity to non-adjacent TPs.

3.1.2 Adjacent and non-adjacent backward TPS. There is considerable

evidence that participants are not only sensitive to forward TPs, but also to backward

TPs. They track TPs when the only informative TPs are backward rather than forward

TPs (Perruchet & Desaulty, 2008; Pelucchi et al., 2009), and discriminate high-TP items

from low-TP items when the test-items are played in reverse order (Endress & Wood,

2011; Turk-Browne & Scholl, 2009).

Here, we test the network’s ability to track backward TPs by familiarizing the

network with the same streams as in the previous section, but playing the test-items in

reverse order (e.g., CBA instead of ABC).

As shown in Figure 3a and 3b, the network performance with reversed items

essentially mirrors that with forward items, with similar performance for both forward

and backward items, with the main difference that the performance asymmetry between

C:DE and BC:D part-units was reversed.
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3.2 The role of frequency of occurrence

The experiments presented so far confound TPs and frequency of occurrence:

Units do not only have stronger TPs than part-units, but they also occur more frequently.

This problem was initially noted by Aslin et al. (1998). They addressed it by

having infants “choose” between units and part-units that were matched in frequency

(see Aslin et al., 1998 for more details on the design).

Endress and Mehler (2009) and Endress and Langus (2017) presented a more

“extreme” control experiment. In their experiments, high-TP units were matched in

terms of TPs to high-TP phantom-units that had the same TPs as units but never

occurred in the familiarization stream and thus had a frequency of occurrence of zero

(see Endress & Mehler, 2009; Endress & Langus, 2017 for more details on the design).

Participants preferred (i.e., better recognized) high-TP units to low-TP part-units that

had occurred in the familiarization stream, they preferred high-TP phantom-units to

low-TP part-units despite the difference in frequency of occurrence, and they failed to

discriminate between units and phantom-units (but see Perruchet & Poulin-Charronnat,

2012, for evidence that units and phantom-units might sometimes be discriminated).

Here, we expose the network to a six unit stream inspired by Endress and Mehler

(2009) and Endress and Langus (2017). Following this, we test the network on units,

phantom-units and part-units.

The results are shown in Figures 4a and 4b. As in the experiments reported above,

the network failed on all comparisons for low forgetting rates as it indiscriminately

learned associations among all items.

For medium and, in this experiment, high forgetting rates, the network preferred
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units and, critically, also phantom-units over part-units roughly to the same extent; we

also replicate the somewhat better performance when the part-unit is of C:DA type

compared to part-units of BC:D type. As the participants in Endress and Mehler (2009)

and Endress and Langus (2017), the network is thus more sensitive to differences in TPs

than to differences in frequency of occurrence, and recognizes TPs even in items it has

never encountered before.

In contrast, the network does not seem to discriminate between units and

phantom-units, replicating Endress and Mehler’s (2009) and Endress and Langus’s

(2017) results, and suggesting again that the network is more sensitive to TPs than to

frequency of occurrence.

4 Discussion

Identifying recurrent units in a continuous signal is an important problem,

especially for language acquisition. Observers might potentially solve this problem by

tracking co-occurrence statistics among items, assessing the predictiveness of different

items. Indeed, humans have sophisticated statistical learning abilities, allowing them to

encode and recognize Transitional Probabilities (TPs) irrespective of whether items are

played forward or backwards, whether the items are temporarily adjacent or

non-adjacent, and whether the units in which the TPs occur are known or entirely novel.

We show that a simple neural network accounts for all of these phenomena based

on correlational (i.e., Hebbian) learning. Interestingly, the critical ingredient for

successful learning seems to be forgetting: If forgetting is too weak, indiscriminate

associations are formed that are, therefore, uninformative; conversely, if forgetting is too

strong, no associations are formed.
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Our results also lead to a counterintuitive conclusion about the computational

function of statistical learning. While our model presents a rather simple and

straightforward mechanistic explanation for our sophisticated statistical learning

abilities, these TP-based mechanisms are only partially compatible with the presumed

function of statistical learning – namely to store recurrent units in memory. Ultimately, a

mechanism that recognizes items played backwards or items it has not encountered at all

can hardly be said to maintain faithful memory representations of the relevant items.

Conversely, recognizing backwards or unheard items is inconsistent with models that

actually store items in memory (Batchelder, 2002; Perruchet & Vinter, 1998).

Similar dissociations between statistical learning abilities and memory for specific

episodes between amnesic and Parkinson’s patients have led to the conclusion that

humans have a (cortical) declarative memory system that is independent of a

(neostriatal) system for forming associations (Knowlton, Mangels, & Squire, 1996;

Poldrack et al., 2001). Statistical learning might be used for predictive processing rather

than memory per se (Goujon, Didierjean, & Thorpe, 2015; Turk-Browne, Scholl,

Johnson, & Chun, 2010), and our model is consistent with such a function.2

Together with our model, such results suggest that statistical learning, powerful as

it is, might not be sufficient for placing recurring units in memory. After all, we clearly

have declarative memories of such items, and know that we know the word learning

rather than a backwards version such as gninrael. As a result, a critical question for

future research is to find out how the power of predictive processes such as statistical

2 While Parkinson’s patients were initially thought to be impaired in associative learning in general
(Knowlton et al., 1996), further research revealed that, for many tasks, such patients have intact
associative learning abilities, and that their impairment might depend on the need to integrate probabilistic
feedback across learning episodes (Smith & McDowall, 2006). Be that as it might, statistical learning
does not seem to lead to declarative knowledge of specific even in studies that link it to the Medial
Temporal Lobe (Turk-Browne et al., 2010).
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learning is harnessed to form declarative memories of recurring units in sequences.
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Figure 1. Illustration of the computational principles of the simulations. We plot the
network activation when stimulated by a recurring unit ABC. (a) On the first occurrence
of the unit, no associations have been formed yet. Hence, when A is presented, A (but
no other items) becomes active, and then decays, though some activation persists even
while C is presented. Likewise, B and C become active upon presentation, and then
decay. The initial activation is weaker for B and C than for A due to the presence of
inhibitory interactions; this is because, for A, no other potentially inhibiting
representations are active yet, while other activated items (e.g., A) have inhibitory input
for B and C. (b) On the last occurrence of a unit, associations between the items have
been formed. When the network is externally stimulated with a unit such as ABC, the
activation of B and C is greater than that of A when the corresponding items are
stimulated. This is because B and C (but not A) receive excitatory input from the
strongly associated, preceding items. (c) Weights at the end of the familiarization phase.
The connection weights between adjacent items are stronger than those between
non-adjacent items (i.e., between A and C).
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Figure 2. Results for items presented in forward order, different forgetting rates (0,
0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit: ABC vs.
BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF).
(a) Difference scores. The scores are calculated based the global activation as a measure
of the network’s familiarity with the items. Significance is assessed based on Wilcoxon
tests against the chance level of zero. (b) Percentage of simulations with a preference for
the target items. The simulations are assessed based on the global activation in the
network. The dashed line shows the minimum percentage of simulations that is
significant based on a binomial test.
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Figure 3. Results for items presented in backward order, different forgetting rates (0,
0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit: ABC vs.
BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF).
(a) Difference scores. The scores are calculated based the global activation as a measure
of the network’s familiarity with the items. Significance is assessed based on Wilcoxon
tests against the chance level of zero. (b) Percentage of simulations with a preference for
the target items. The simulations are assessed based on the global activation in the
network. The dashed line shows the minimum percentage of simulations that is
significant based on a binomial test.
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Figure 4. Results of the simulations comprising phantom-units, for items presented in
forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the
different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Phantom-Unit vs. Part-Unit: Phantom-Unit vs. BC:D and Phantom-Unit vs. C:DE; Unit
vs. Phantom-Unit). (a) Difference scores. The scores are calculated based the global
activation as a measure of the network’s familiarity with the items. Significance is
assessed based on Wilcoxon tests against the chance level of zero. (b) Percentage of
simulations with a preference for the target items. The simulations are assessed based on
the global activation. The dashed line shows the minimum percentage of simulations
that is significant based on a binomial test.
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Supplementary Material A

Model definition

The activation of the ith unit xi(t) is governed by the differential equation.

ẋi = −λaxi + α
∑
j 6=i

wijF (xj)− β
∑
j 6=i

F (xj) + noise

where F (x) is some activation function. (Here we use F (x) = x
1+x

). The first

term represents exponential forgetting with a time constant of λa, the second term

activation from other units, and the third term inhibition among items to keep the overall

activation in a reasonable range.

The weights wij are updated using a Hebbian learning rule

ẇij = −λwwij + ρF (xi)F (xj)

λw is the time constant of forgetting (which we set to zero in our simulations)

while ρ is the learning rate.

A discrete version of the activation equation is given by

xi(t+ 1) = xi(t)− λaxi(t) + α
∑
j 6=i

wijF (xj)− β
∑
j 6=i

F (xj) + noise

While the time step is arbitrary in the absence of external input, we use the

duration of individual units (e.g., syllables, visual symbols etc.) as the time unit in our
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discretization because associative learning is generally invariant under temporal scaling

of the experiment (Gallistel & Gibbon, 2000). Further, while only excitatory

connections are tuned by learning in our model, the same effect could be obtained by

tuning inhibition, for example through tunable disinhibitory interneurons (Letzkus et al.,

2011). Here, we simply focus on the result that a fairly generic network architecture

accounts for the hallmarks of statistical learning that, so far, have eluded explanation.

The discrete updating rule for the weights is

wij(t+ 1) = wij(t)− λwwij(t) + ρF (xi)F (xj)

Simulation parameters are listed in Table A1. An R implementation is available at

https://figshare.com/s/7a4ad045a3084f7b8920. (Please note that the

URL will change in the final version of the manuscript. The final location will be

http://doi.org/10.25383/city.11359376.)

Table A1
Parameters used in the simulations

Symbol Function Value(s)

α Excitation coefficient 0.7
β Inhibition coefficient 0.4
λa Forgetting rate — Activation 0, 0.2, 0.4, 0.6, 0.8, 1
λw Forgetting rate — Weights 0
σnoise, activation Standard deviation of activation noise 0.001
σnoise, weights Standard deviation of weight noise 0
ρ 0.05
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Supplementary Material B

Detailed results

Table B1 provides detailed results for the simulations in terms of descriptive statistics

and statistical tests for the simulation testing the recognition of (forward and backward)

units, part-units, rule-units and class-units.

Table B2 provides similar results for the simulations testing the recognition of

units, part-units and phantom-units.

Table B1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

Forward

0 M −180× 10−3 −113× 10−3 −82.7× 10−3 −101× 10−3

0 SE −18.1× 10−3 −11.4× 10−3 −8.31× 10−3 −10.2× 10−3

0 pW ilcoxon 95.7× 10−3 222× 10−3 452× 10−3 607× 10−3

0 PSimulations 470× 10−3 540× 10−3 490× 10−3 570× 10−3

200× 10−3 M −109× 10−3 −72.8× 10−3 −92.6× 10−3 −87.1× 10−3

200× 10−3 SE −11.0× 10−3 −7.32× 10−3 −9.31× 10−3 −8.75× 10−3

200× 10−3 pW ilcoxon 120× 10−3 118× 10−3 152× 10−3 134× 10−3

200× 10−3 PSimulations 490× 10−3 530× 10−3 540× 10−3 510× 10−3

400× 10−3 M 3.68× 10−3 102× 10−3 12.4× 10−3 13.2× 10−3

400× 10−3 SE 369× 10−6 10.2× 10−3 1.25× 10−3 1.33× 10−3
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Table B1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.
(continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

400× 10−3 pW ilcoxon 2.92× 10−12 3.96× 10−18 4.08× 10−18 4.08× 10−18

400× 10−3 PSimulations 830× 10−3 1.00 990× 10−3 990× 10−3

600× 10−3 M 7.65× 10−3 50.8× 10−3 565× 10−6 465× 10−6

600× 10−3 SE 769× 10−6 5.10× 10−3 56.8× 10−6 46.7× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 462× 10−6 320× 10−6

600× 10−3 PSimulations 1.00 1.00 630× 10−3 630× 10−3

800× 10−3 M 9.48× 10−3 17.1× 10−3 −13.0× 10−6 −35.9× 10−6

800× 10−3 SE 953× 10−6 1.72× 10−3 −1.31× 10−6 −3.61× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 583× 10−3 681× 10−3

800× 10−3 PSimulations 1.00 1.00 590× 10−3 470× 10−3

1.00 M 32.9× 10−6 31.9× 10−6 23.7× 10−6 −64.9× 10−6

1.00 SE 3.30× 10−6 3.21× 10−6 2.38× 10−6 −6.52× 10−6

1.00 pW ilcoxon 737× 10−3 646× 10−3 897× 10−3 231× 10−3

1.00 PSimulations 530× 10−3 500× 10−3 480× 10−3 450× 10−3

Backward

0 M −125× 10−3 −82.7× 10−3 −79.9× 10−3 −74.8× 10−3

0 SE −12.5× 10−3 −8.31× 10−3 −8.03× 10−3 −7.52× 10−3

0 pW ilcoxon 947× 10−3 448× 10−3 286× 10−3 607× 10−3
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Table B1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.
(continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

0 PSimulations 620× 10−3 560× 10−3 480× 10−3 560× 10−3

200× 10−3 M 9.35× 10−3 5.52× 10−3 −75.9× 10−3 −91.2× 10−3

200× 10−3 SE 940× 10−6 555× 10−6 −7.63× 10−3 −9.16× 10−3

200× 10−3 pW ilcoxon 753× 10−3 730× 10−3 160× 10−3 92.4× 10−3

200× 10−3 PSimulations 650× 10−3 580× 10−3 520× 10−3 510× 10−3

400× 10−3 M 111× 10−3 76.7× 10−3 14.9× 10−3 16.9× 10−3

400× 10−3 SE 11.2× 10−3 7.71× 10−3 1.50× 10−3 1.70× 10−3

400× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 7.01× 10−18 3.96× 10−18

400× 10−3 PSimulations 1.00 1.00 980× 10−3 1.00

600× 10−3 M 54.9× 10−3 32.2× 10−3 308× 10−6 536× 10−6

600× 10−3 SE 5.52× 10−3 3.23× 10−3 31.0× 10−6 53.9× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 239× 10−3 14.2× 10−6

600× 10−3 PSimulations 1.00 1.00 550× 10−3 660× 10−3

800× 10−3 M 16.4× 10−3 12.8× 10−3 −22.4× 10−6 42.4× 10−6

800× 10−3 SE 1.65× 10−3 1.29× 10−3 −2.25× 10−6 4.26× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 985× 10−3 463× 10−3

800× 10−3 PSimulations 1.00 1.00 500× 10−3 500× 10−3

1.00 M −118× 10−6 −50.9× 10−6 −47.2× 10−6 −22.9× 10−6
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Table B1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.
(continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

1.00 SE −11.9× 10−6 −5.12× 10−6 −4.75× 10−6 −2.30× 10−6

1.00 pW ilcoxon 39.6× 10−3 278× 10−3 358× 10−3 709× 10−3

1.00 PSimulations 410× 10−3 460× 10−3 490× 10−3 490× 10−3
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Table B2
Detailed results for the different forgetting rates and comparisons, using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.

λa Statistic Unit vs BC:D Unit vs C:DE Phantom vs BC:D Phantom vs C:DE Unit vs Phantom

0 M −57.8× 10−3 −121× 10−3 −49.7× 10−3 −91.3× 10−3 −38.7× 10−3

0 SE −5.81× 10−3 −12.1× 10−3 −5.00× 10−3 −9.18× 10−3 −3.89× 10−3

0 pW ilcoxon 876× 10−3 385× 10−3 865× 10−3 835× 10−3 133× 10−3

0 PSimulations 540× 10−3 520× 10−3 570× 10−3 550× 10−3 450× 10−3

200× 10−3 M −53.0× 10−3 −164× 10−3 −53.5× 10−3 −178× 10−3 27.6× 10−3

200× 10−3 SE −5.33× 10−3 −16.5× 10−3 −5.38× 10−3 −17.8× 10−3 2.77× 10−3

200× 10−3 pW ilcoxon 761× 10−3 120× 10−3 979× 10−3 111× 10−3 544× 10−3

200× 10−3 PSimulations 500× 10−3 480× 10−3 590× 10−3 540× 10−3 530× 10−3

400× 10−3 M 76.4× 10−3 −27.0× 10−3 72.2× 10−3 −36.4× 10−3 14.3× 10−3

400× 10−3 SE 7.68× 10−3 −2.71× 10−3 7.25× 10−3 −3.66× 10−3 1.44× 10−3

400× 10−3 pW ilcoxon 22.7× 10−3 819× 10−3 6.92× 10−3 471× 10−3 681× 10−3

400× 10−3 PSimulations 640× 10−3 570× 10−3 700× 10−3 650× 10−3 450× 10−3

600× 10−3 M 2.06× 10−3 21.8× 10−3 2.12× 10−3 21.9× 10−3 −60.7× 10−6

600× 10−3 SE 207× 10−6 2.20× 10−3 214× 10−6 2.20× 10−3 −6.10× 10−6

600× 10−3 pW ilcoxon 296× 10−12 3.96× 10−18 5.91× 10−12 3.96× 10−18 654× 10−3

600× 10−3 PSimulations 780× 10−3 1.00 820× 10−3 1.00 500× 10−3

800× 10−3 M 2.12× 10−3 5.21× 10−3 2.17× 10−3 5.26× 10−3 −50.4× 10−6

800× 10−3 SE 213× 10−6 524× 10−6 218× 10−6 529× 10−6 −5.07× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 3.96× 10−18 3.96× 10−18 382× 10−3

800× 10−3 PSimulations 1.00 1.00 1.00 1.00 480× 10−3

1.00 M 17.8× 10−6 17.9× 10−6 17.5× 10−6 17.7× 10−6 233× 10−9

1.00 SE 1.79× 10−6 1.80× 10−6 1.76× 10−6 1.78× 10−6 23.4× 10−9

1.00 pW ilcoxon 5.51× 10−18 172× 10−18 2.31× 10−15 846× 10−18 849× 10−3

1.00 PSimulations 980× 10−3 920× 10−3 880× 10−3 870× 10−3 490× 10−3
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Supplementary Material C

Experiments using the activation in the test-items

Here, we report on experiments where we evaluate the network performance using the

activation of only those items that are part of the the test-items instead of the global

activation. That is, when an unit ABC was presented, we assess the network’s familiarity

with the items by recording the activation in A, B and C; in contrast, in the simulation

above, we recorded the activation in all items. Intuitively, one would expect the results

to be similar, as the active items will mainly be those that have been stimulated.

C.1 High- vs. low-TP items, tested forwards and backwards

C.1.1 Adjacent and non-adjacent forward TPs. In this section, we seek to

demonstrate that the network is sensitive to basic forward TPs among and non-adjacent

items. Again, to demonstrate a sensitivity to TPs among adjacent items, the network will

be tested on units and part-units. Likewise, the demonstration of a sensitivity to TPs

among non-adjacent items is inspired by the paradigm by Endress and Bonatti (2007)

and will be tested on rule-units vs. class-units, either with a middle item that appear

during familiarization or with a novel middle item.

As shown in Figure C1 and C2, the results are very similar to those based on the

global network activation reported above: The network fails for very low and very high

forgetting parameters, and successeds on all comparisons with intermediate forgetting

parameters. Numerically speaking, the results are similar to those used above as well.

C.1.2 Adjacent and non-adjacent backward TPS. Again, we test the

network’s ability to track backward TPs by familiarizing the network with the same

streams as in the previous section, but playing the test-items in reverse order (e.g., CBA
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instead of ABC).

As shown in Figures C3 and C4, the results are very similar to those based on the

global network activation reported above: The network fails for very low and very high

forgetting parameters, and successeds on all comparisons with intermediate forgetting

parameters. Numerically speaking, the results are similar to those used above as well.

Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the activation
of the elements of the test-items as a measure of the network’s familiarity with the items.
pW ilcoxon represents the p value of a Wilcoxon test on the difference scores against the
chance level of zero. PSimulations represents the proportion of simulations showing
positive difference scores.

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

Forward

0 M −180× 10−3 −113× 10−3 −82.7× 10−3 −101× 10−3

0 SE −18.1× 10−3 −11.4× 10−3 −8.31× 10−3 −10.2× 10−3

0 pW ilcoxon 95.7× 10−3 222× 10−3 452× 10−3 607× 10−3

0 PSimulations 470× 10−3 540× 10−3 490× 10−3 570× 10−3

200× 10−3 M −109× 10−3 −72.8× 10−3 −92.6× 10−3 −87.1× 10−3

200× 10−3 SE −11.0× 10−3 −7.32× 10−3 −9.31× 10−3 −8.75× 10−3

200× 10−3 pW ilcoxon 120× 10−3 118× 10−3 152× 10−3 134× 10−3

200× 10−3 PSimulations 490× 10−3 530× 10−3 540× 10−3 510× 10−3

400× 10−3 M 3.68× 10−3 102× 10−3 12.4× 10−3 13.2× 10−3

400× 10−3 SE 369× 10−6 10.2× 10−3 1.25× 10−3 1.33× 10−3

400× 10−3 pW ilcoxon 2.92× 10−12 3.96× 10−18 4.08× 10−18 4.08× 10−18

400× 10−3 PSimulations 830× 10−3 1.00 990× 10−3 990× 10−3
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Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the activation
of the elements of the test-items as a measure of the network’s familiarity with the items.
pW ilcoxon represents the p value of a Wilcoxon test on the difference scores against the
chance level of zero. PSimulations represents the proportion of simulations showing
positive difference scores. (continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

600× 10−3 M 7.65× 10−3 50.8× 10−3 565× 10−6 465× 10−6

600× 10−3 SE 769× 10−6 5.10× 10−3 56.8× 10−6 46.7× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 462× 10−6 320× 10−6

600× 10−3 PSimulations 1.00 1.00 630× 10−3 630× 10−3

800× 10−3 M 9.48× 10−3 17.1× 10−3 −13.0× 10−6 −35.9× 10−6

800× 10−3 SE 953× 10−6 1.72× 10−3 −1.31× 10−6 −3.61× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 583× 10−3 681× 10−3

800× 10−3 PSimulations 1.00 1.00 590× 10−3 470× 10−3

1.00 M 32.9× 10−6 31.9× 10−6 23.7× 10−6 −64.9× 10−6

1.00 SE 3.30× 10−6 3.21× 10−6 2.38× 10−6 −6.52× 10−6

1.00 pW ilcoxon 737× 10−3 646× 10−3 897× 10−3 231× 10−3

1.00 PSimulations 530× 10−3 500× 10−3 480× 10−3 450× 10−3

Backward

0 M −125× 10−3 −82.7× 10−3 −79.9× 10−3 −74.8× 10−3

0 SE −12.5× 10−3 −8.31× 10−3 −8.03× 10−3 −7.52× 10−3

0 pW ilcoxon 947× 10−3 448× 10−3 286× 10−3 607× 10−3

0 PSimulations 620× 10−3 560× 10−3 480× 10−3 560× 10−3

200× 10−3 M 9.35× 10−3 5.52× 10−3 −75.9× 10−3 −91.2× 10−3
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Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the activation
of the elements of the test-items as a measure of the network’s familiarity with the items.
pW ilcoxon represents the p value of a Wilcoxon test on the difference scores against the
chance level of zero. PSimulations represents the proportion of simulations showing
positive difference scores. (continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

200× 10−3 SE 940× 10−6 555× 10−6 −7.63× 10−3 −9.16× 10−3

200× 10−3 pW ilcoxon 753× 10−3 730× 10−3 160× 10−3 92.4× 10−3

200× 10−3 PSimulations 650× 10−3 580× 10−3 520× 10−3 510× 10−3

400× 10−3 M 111× 10−3 76.7× 10−3 14.9× 10−3 16.9× 10−3

400× 10−3 SE 11.2× 10−3 7.71× 10−3 1.50× 10−3 1.70× 10−3

400× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 7.01× 10−18 3.96× 10−18

400× 10−3 PSimulations 1.00 1.00 980× 10−3 1.00

600× 10−3 M 54.9× 10−3 32.2× 10−3 308× 10−6 536× 10−6

600× 10−3 SE 5.52× 10−3 3.23× 10−3 31.0× 10−6 53.9× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 239× 10−3 14.2× 10−6

600× 10−3 PSimulations 1.00 1.00 550× 10−3 660× 10−3

800× 10−3 M 16.4× 10−3 12.8× 10−3 −22.4× 10−6 42.4× 10−6

800× 10−3 SE 1.65× 10−3 1.29× 10−3 −2.25× 10−6 4.26× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 985× 10−3 463× 10−3

800× 10−3 PSimulations 1.00 1.00 500× 10−3 500× 10−3

1.00 M −118× 10−6 −50.9× 10−6 −47.2× 10−6 −22.9× 10−6

1.00 SE −11.9× 10−6 −5.12× 10−6 −4.75× 10−6 −2.30× 10−6

1.00 pW ilcoxon 39.6× 10−3 278× 10−3 358× 10−3 709× 10−3
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Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the activation
of the elements of the test-items as a measure of the network’s familiarity with the items.
pW ilcoxon represents the p value of a Wilcoxon test on the difference scores against the
chance level of zero. PSimulations represents the proportion of simulations showing
positive difference scores. (continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

1.00 PSimulations 410× 10−3 460× 10−3 490× 10−3 490× 10−3

C.2 The role of frequency of occurrence

As mentioned above, the experiments presented so far confound TPs and

frequency of occurrence: Units do not only have stronger TPs than part-units, but they

also occur more frequently. Among the control experiments for this issue (Aslin et al.,

1998; Endress & Mehler, 2009; Endress & Langus, 2017), our computational

experiments are inspired by Endress and Mehler (2009) and Endress and Langus (2017).

We thus expose the network to a six unit stream inspired by Endress and Mehler (2009)

and Endress and Langus (2017). Following this, we test the network on units,

phantom-units and part-units.

As shown in Figure C5 and C6, the results are very similar to those based on the

global network activation reported above: The network fails for very low and very high

forgetting parameters, and prefers units and phantom-units over part-units roughly to the

same extent for medium and high forgetting rates. As in Endress and Mehler (2009) and

Endress and Langus (2017), it thus more sensitive to differences in TPs than to

differences in frequency of occurrence. In contrast, the network does not seem to
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discriminate between units and phantom-units, replicating Endress and Mehler’s (2009)

and Endress and Langus’s (2017) results.

C.3 Detailed results

Table C1 provides detailed results for the simulations in terms of descriptive

statistics and statistical tests for the simulation testing the recognition of (forward and

backward) units, part-units, rule-units and class-units.

Table C2 provides similar results for the simulations testing the recognition of

units, part-units and phantom-units.
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Table C2
Detailed results for the different forgetting rates and comparisons, and using the
activation of the elements of the test-items as a measure of the network’s familiarity with
the items. pW ilcoxon represents the p value of a Wilcoxon test on the difference scores
against the chance level of zero. PSimulations represents the proportion of simulations
showing positive difference scores.

λa Statistic Unit vs BC:D Unit vs C:DE Phantom vs BC:D Phantom vs C:DE Unit vs Phantom

0 M −57.8× 10−3 −121× 10−3 −49.7× 10−3 −91.3× 10−3 −38.7× 10−3

0 SE −5.81× 10−3 −12.1× 10−3 −5.00× 10−3 −9.18× 10−3 −3.89× 10−3

0 pW ilcoxon 876× 10−3 385× 10−3 865× 10−3 835× 10−3 133× 10−3

0 PSimulations 540× 10−3 520× 10−3 570× 10−3 550× 10−3 450× 10−3

200× 10−3 M −53.0× 10−3 −164× 10−3 −53.5× 10−3 −178× 10−3 27.6× 10−3

200× 10−3 SE −5.33× 10−3 −16.5× 10−3 −5.38× 10−3 −17.8× 10−3 2.77× 10−3

200× 10−3 pW ilcoxon 761× 10−3 120× 10−3 979× 10−3 111× 10−3 544× 10−3

200× 10−3 PSimulations 500× 10−3 480× 10−3 590× 10−3 540× 10−3 530× 10−3

400× 10−3 M 76.4× 10−3 −27.0× 10−3 72.2× 10−3 −36.4× 10−3 14.3× 10−3

400× 10−3 SE 7.68× 10−3 −2.71× 10−3 7.25× 10−3 −3.66× 10−3 1.44× 10−3

400× 10−3 pW ilcoxon 22.7× 10−3 819× 10−3 6.92× 10−3 471× 10−3 681× 10−3

400× 10−3 PSimulations 640× 10−3 570× 10−3 700× 10−3 650× 10−3 450× 10−3

600× 10−3 M 2.06× 10−3 21.8× 10−3 2.12× 10−3 21.9× 10−3 −60.7× 10−6

600× 10−3 SE 207× 10−6 2.20× 10−3 214× 10−6 2.20× 10−3 −6.10× 10−6

600× 10−3 pW ilcoxon 296× 10−12 3.96× 10−18 5.91× 10−12 3.96× 10−18 654× 10−3

600× 10−3 PSimulations 780× 10−3 1.00 820× 10−3 1.00 500× 10−3

800× 10−3 M 2.12× 10−3 5.21× 10−3 2.17× 10−3 5.26× 10−3 −50.4× 10−6

800× 10−3 SE 213× 10−6 524× 10−6 218× 10−6 529× 10−6 −5.07× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 3.96× 10−18 3.96× 10−18 382× 10−3

800× 10−3 PSimulations 1.00 1.00 1.00 1.00 480× 10−3

1.00 M 17.8× 10−6 17.9× 10−6 17.5× 10−6 17.7× 10−6 233× 10−9

1.00 SE 1.79× 10−6 1.80× 10−6 1.76× 10−6 1.78× 10−6 23.4× 10−9

1.00 pW ilcoxon 5.51× 10−18 172× 10−18 2.31× 10−15 846× 10−18 849× 10−3

1.00 PSimulations 980× 10−3 920× 10−3 880× 10−3 870× 10−3 490× 10−3
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Figure C1. Difference scores for items presented in forward order, different forgetting
rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs.
AXF). The scores are calculated based the activation in the test items as a measure of the
network’s familiarity with the items. Significance is assessed based on Wilcoxon tests
against the chance level of zero.
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Figure C2. Percentage of simulations with a preference for the target items for items
presented in forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1) and
for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF). The simulations are
assessed based on the activation in the test items. The dashed line shows the minimum
percentage of simulations that is significant based on a binomial test.
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Figure C3. Difference scores for items presented in backward order, different
forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs.
Part-Unit: ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF
and AXC vs. AXF). The scores are calculated based the activation in the test items as a
measure of the network’s familiarity with the items. Significance is assessed based on
Wilcoxon tests against the chance level of zero.
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Figure C4. Percentage of simulations with a preference for the target items for items
presented in backward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1) and
for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF). The simulations are
assessed based on the activation in the test items. The dashed line shows the minimum
percentage of simulations that is significant based on a binomial test.
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Figure C5. Difference scores for items presented in forward order, different forgetting
rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Phantom-Unit vs. Part-Unit: Phantom-Unit vs.
BC:D and Phantom-Unit vs. C:DE; Unit vs. Phantom-Unit). The scores are calculated
based the activation in the test items as a measure of the network’s familiarity with the
items. Significance is assessed based on Wilcoxon tests against the chance level of zero.
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Figure C6. Percentage of simulations with a preference for the target items for items
presented in forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1) and
for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Phantom-Unit vs. Part-Unit: Phantom-Unit vs. BC:D and Phantom-Unit vs. C:DE; Unit
vs. Phantom-Unit). The simulations are assessed based on the activation in the test
items. The dashed line shows the minimum percentage of simulations that is significant
based on a binomial test.


