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According the size principle, learners choose the less likely of two hypotheses if it
is compatible with the data (e.g., Tenenbaum & Griffiths, 2001). While the size
principle has played important roles in recent theorizing, there is limited evidence in
support of it. Frank (2013) provided a list of experiments that are presumably the
strongest cases for the size principle (Denison, Reed, & Xu, 2013; Gweon, Tenen-
baum, & Schulz, 2010; Navarro, Dry, & Lee, 2012; Xu & Tenenbaum, 2007a, 2007b).
I critical review these experiments, and show that they either rely on extraneous
assumptions without which they would not fit the data, sometimes do not fit the
data in the first place, and that, when they fit the data, the data often have more
plausible interpretations that do not appeal to the size principle. I conclude that
there is no support for the hypothesis that learners use the size principle to decide
among hypotheses, and that basic psychological principles provide a better account
of these data.

Introduction

When making an inference, we need to decide among
competing hypotheses based on limited data. This raises
the problem of how we choose the correct hypothesis al-
though other hypotheses are just as consistent with the
data (e.g., Goodman, 1955; Hume, 1739/2003; Wittgen-
stein, 1953). Empirically, humans seem to be fairly
successful at choosing appropriate hypotheses. For ex-
ample, infants make the correct “inferences” to learn
their native language, and, over longer time periods,
our inferences about the natural world seem to be cor-
rect enough for cars, computers, CT scans and so on to
work. In other cases, however, our inferences are fairly
poor (Kahneman & Tversky, 1996; Tversky & Kahne-
man, 1974). The question thus is why we are so good
at making some inferences but not others, and what
the psychological principles are that let us make such
inferences.

Following Tenenbaum and Griffiths (2001), a subset
of such inference problems have been proposed to be
solvable using the “size principle.” If we have to choose
between two hypotheses that are equally consistent with
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the examples we have seen, we choose the hypothesis
that is a priori more unlikely (see Tenenbaum & Grif-
fiths, 2001, for a justification). In fact, a related strategy
has been proposed in the context of natural language ac-
quisition. Specifically, some scholars proposed that in-
fants learn the most restrictive grammar consistent with
what they hear (or with what they see in the case of sign
languages; Hyams, 1986; Manzini & Wexler, 1987). In
some reading of this proposal, these authors proposed
that humans evolved to acquire language following a se-
quence of acquisition steps that is consistent with the
most restrictive grammar given the input, using specific
“triggers” to move from a more restrictive grammar to
a more permissive one. The underlying idea is that the
triggers allow learners to “conclude” that their current
grammars are not general enough, and to adjust them
appropriately, while it is unclear how they could even
notice that they started out with a grammar that is too
general.

While this idea seems plausible in the domain-specific
case of language acquisition, it has been suggested in the
literature following Tenenbaum and Griffiths (2001) that
the size principle can be used for arbitrary inferences
(at least judging from the cases it has been applied to).
In fact, the size principle has been applied to domains
from the basic probabilistic inferences of young infants
to language acquisition to social cognition (see below for
references). For example, Frank and Tenenbaum (2011)
modeled how infants might learn certain grammar-like
regularities. They proposed that, when infants have to
choose between multiple regularities that are consistent
with examples they have heard, they choose the one that
has fewer potential items conforming to it. According
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to their model, infants might encounter a total of three
syllables. Before encountering any syllable triplet, in-
fants know that the three syllables allow for a total 27
triplets, that 6 of these triplets follow an ABB pattern
(e.g., pu-li-li), that 3 of these triplets follow an AAA
pattern (where all three syllables are identical), as well
as the number of triplets that would conform to any
conceivable rule. They then use the number of triplets
that are consistent with each rule to choose among possi-
ble generalizations. However, they did not provide any
suggestion for how infants might know the number of
triplets that conform to each generalization.

I (Endress, 2013) analyzed these models in detail, and
showed that they did not account for the data they were
designed to account for (see Frank (2013) and Endress
(under review) for discussion). One of the conclusions
that followed from my analysis as well as from novel
experiments was that there is no convincing evidence
that we use the size principle to make arbitrary infer-
ences. However, Frank (2013) proposed that several pa-
pers provide evidence for the size principle (Denison et
al., 2013; Gweon et al., 2010; Navarro et al., 2012; Xu
& Tenenbaum, 2007a, 2007b). Below, I critically review
these papers, and show that they provide no evidence
for the size principle.

The objective of this review is twofold. First, given
the importance of the size principle in recent theorizing,
it is critical to assess whether there is really convincing
evidence in favor of this hypothesis. Second, the size
principle is intimately linked to Bayesian approaches to
cognition, which, in turn, have been proposed to account
for a growing variety of data (see e.g., Bowers & Davis,
2012; Endress, 2013; Jones & Love, 2011, for critical
reviews). However, I have argued that, when Bayesian
models of cognitive phenomena are reported, they of-
ten rely on extraneous assumptions without which they
would not fit the data, sometimes do not fit the data in
the first place, and that, if they fit the data, the data
often have more plausible interpretations from common-
sense psychology (e.g., Endress, Dehaene-Lambertz, &
Mehler, 2007; Endress, Nespor, & Mehler, 2009). Hence,
I will use the aforementioned papers to provide another
case study for the superiority of explanations based on
common-sense psychology compared to Bayesian models
of cognition.

Probabilistic inferences in
infancy

Before discussing the aforementioned papers in more
detail, it is important to address the relation between
the size principle and probabilistic abilities in early in-
fancy. Indeed, infants have remarkable knowledge of
probabilistic principles. For example, Téglás, Girotto,
Gonzalez, and Bonatti (2007) presented infants with dis-
plays in which two kinds of objects moved randomly
inside an enclosure. Importantly, the enclosure had a
hole where the objects could leave. One kind of ob-

ject had a higher cardinality than the other. Téglás
et al. (2007) showed that infants are less surprised to
find an object outside the enclosure when it belonged
to the more numerous class than when it belonged to
the less numerous one, which is consistent with the in-
ferences one would draw if the objects were randomly
picked from the enclosure. Subsequent work has sup-
ported similar conclusions(e.g., Téglás et al., 2011; Xu
& Garcia, 2008; Xu & Denison, 2009). Further, infants
can use these abilities to detect non-random behavior in
agents (Kushnir, Xu, & Wellman, 2010).

While such results attest to the impressive probabilis-
tic abilities of young infants, and show that infants can,
in some situations, form expectations about outcomes
based on a priori considerations, they do not provide
any evidence that infants (or adults for that matter)
choose hypotheses based on the number of items that are
compatible with them, especially if most of these items
are never presented. In fact, in these experiments, there
simply are no hypotheses infants could choose based on
the number of items they are compatible with.

Xu and Tenenbaum (2007b),
Navarro et al. (2012)

One of the strongest potential pieces of evidence in
favor of the size principle comes from Xu and Tenen-
baum’s (2007b) experiments. They asked how learners
assign meaning to novel nouns, and under what condi-
tion they would choose a meaning at the subordinate
category level (e.g., “Dalmatian”), at the basic-level cat-
egory level (e.g., “dog”), or at the superordinate category
level (e.g., “animal”).

Participants were presented with a novel word (e.g.,
“fep”), and shown one or three examples of the word’s
meaning (e.g., a Dalmatian). Following this, they were
shown a test screen with potential examples of “feps”,
and had to select other feps.

The test screen comprised 8 items of each of three su-
perordinate categories (i.e., animals, vegetables and ve-
hicles). Within each category, there were 2 examples of
the same subordinate category (e.g., two other Dalma-
tians), 2 examples of the same basic-level category (e.g.,
two non-Dalmatian dogs), and 4 examples of the same
superordinate category (e.g., four non-dog animals). If
participants concluded that fep meant “animal”, they
should choose all eight pictures of that category; if they
concluded that it meant “dog,” they should choose the
four corresponding pictures; and if they concluded that
it meant“Dalmatian,” they should choose only the other
two Dalmatians.

Results showed that, when participants were famil-
iarized with three Dalmatians, they concluded that fep
meant“Dalmatian.” When familiarized with one Dalma-
tian and two other dogs, they concluded that fep meant
“dog;” and when familiarized with one Dalmatian and
two non-dog animals, they concluded that fep meant
“animal”.
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These results supposedly support the size principle.
Indeed, there are more animals than there are dogs, and
there are more dogs than there are Dalmatians. Hence,
based on the size principle, one would expect a pref-
erence for inferences at the subordinate level, because
subordinate categories contain the fewest possible refer-
ents. Below, however, I will show that this conclusion is
empirically unwarranted.

An explanation based on language acquisition
research

While Frank (2013) and Xu and Tenenbaum (2007b)
take these results as evidence of the size principle,
and suggest that language learners might deploy simi-
lar computations in the service of word learning, it is
questionable whether such an approach would be vi-
able for natural language acquisition. In fact, natural
language learners are rarely shown test screens explic-
itly providing them with the 9 possible meanings of a
novel word as well as with the number of elements of
each category; rather, learners acquire a words whenever
they encounter a situation that is conducive for inferring
its meaning (Medina, Snedeker, Trueswell, & Gleitman,
2011). This raises the question of how learners could
possibly estimate the number of elements of a category.

Even if they had access to this information, it
is questionable whether young infants could pro-
cess it. In fact, there are an estimated 75 mil-
lion dogs in the United States (American Hu-
mane Society U.S. Pet Population Fact Sheet,
http://www.americanhumane.org/assets/pdfs/pets-
fact-sheet.pdf, retrieved on 9/10/13). It is an entirely
open question whether infants can process numbers
of this magnitude, or which other information they
might possibly exploit according to Xu and Tenenbaum
(2007b). As a result, it is questionable whether Xu
and Tenenbaum’s (2007b) account based on the size
principle would scale up to actual language acquisition.

However, prior research in language acquisition might
provide a solution to such problems. For example, it
has been suggested that certain “triggers” might lead
to changes in the hypotheses learners entertain. If so,
learners might assume by default that word meanings
correspond to a basic-level category. This might not
be the case when the exemplar is a “bad” example of
a category; for example, people consider peppers much
less of a vegetable than, say, carrots (e.g., Armstrong,
Gleitman, & Gleitman, 1983), and learners might infer
that the meaning corresponds to the subordinate cate-
gory instead. Further, what learners consider good and
bad examples of a category might change with devel-
opment, and as a function of their experience, which,
in turn, might influence the kinds of inferences learners
make about words.

If learners preferentially assign labels at the basic
level, how might they infer labels at other levels than
the basic category one? Possibly, when they notice that

the basic-level interpretation is incorrect (e.g., because
a cat is an animal but not a dog such that the inter-
pretation “dog” is no longer tenable), they infer that
the meaning corresponds to a superordinate category.
In contrast, when the variability of the exemplars is
less than expected from a basic-level category (e.g., be-
cause learners are not shown the best examples), they
might conclude that the label corresponds to a subordi-
nate category. (This model still faces the problem that
learners need to figure out that the relevant distinction
is, say, between dogs and animals rather than between
other concepts associated with the stimuli that learn-
ers experience (Quine, 1960). However, this problem is
shared by Xu and Tenenbaum’s (2007b) account.) Leav-
ing aside the problem that infants would need to figure
out the relevant inferences in the first place, this model
thus accounts for Xu and Tenenbaum’s (2007b) data,
without making any use of the size principle or Bayesian
computations.

For completeness, I will now show that, even assum-
ing the rest of Xu and Tenenbaum’s (2007b) formalism,
their results do not provide any evidence for the size
principle.

An explanation based on Xu and Tenenbaum’s
(2007b) assumptions about the information
learners consider

As mentioned above, language learners are typically
not shown test screens that explicitly provide them with
the 9 possible meanings of a novel word as well as with
the number of elements of each category before they
make an inference about a word’s meaning. For com-
pleteness, I will now show that Xu and Tenenbaum’s
(2007b) data do not provide any evidence for the size
principle even espousing their assumption that learn-
ers make rational inferences based on the examples and
possible referents they are presented with.

In fact, their results can be account for by a very
simple hypothesis: participants might choose a category
that is (i) consistent with the examples they have seen,
and (ii) where the examples are most similar to the other
items in the category.

The first assumption prevents learners from consider-
ing, say, the meaning “Dalmatian” when presented with
non-Dalmatian dogs, because the label would not fit the
examples. To illustrate the second assumption, I con-
structed a simple similarity score, using the number of
shared category levels of two items as a proxy of their
similarity (i.e., subordinate, basic and superordinate).
That is, two Dalmatians have a similarity score of 3
(because they share all 3 levels), a Dalmatian and a
non-Dalmatian dog have a similarity score of 2, and a
Dalmatian and a cat have a similarity score of 1. This
similarity score reflects the intuition that items from the
same subordinate category (e.g., two poodles) tend to
be more similar than two items from the same basic-
level category (e.g., a poodle and a Labrador), which,



4 ENDRESS

dalmatians (N=2)
non-dalmatian 

dogs (N=2)
non-dog animals 

(N=4) average

Dalmatian 3 3
Dog 3 2 2.5
Animal 3 2 1 1.75

For dalmatian (N=1) Dog 3 2 2.5
Animal 3 2 1 1.75

For other dogs (N=2) Dog 2 2 2
Animal 2 2 1 1.5

Average Dog 2.333333333 2 2.166666667
Animal 2.333333333 2 1 1.583333333

3 Dogs

Similarity to other
Examples

Inference: 
"fep means"

Dalmatians

Figure 1. Similarity between training exemplars and other category members in Xu & Tenenbaum’s (2007b) experiments.
Here, I use the number of category-levels that two items share as a proxy of similarity.

in turn, tend to be more similar than two items from
the same superordinate category (e.g., a poodle and a
bear).

As shown in Figure 1, this simple model predicts Xu
and Tenenbaum’s (2007b) results, without using the size
principle at all. When the examples are consistent with
a subordinate-level category, the similarity is highest for
items within such a category; and when they are con-
sistent only with a basic-level category, the similarity
is highest in such a category as well. Hence, Xu and
Tenenbaum’s (2007b) data present no evidence for the
size principle.

Inferences as a function of the number of exam-
ples

Xu and Tenenbaum (2007b) report another result
that, at first sight, seems to provide strong evidence
for the size principle. Specifically, they show that, when
participants are familiarized with a single Dalmatian,
they conclude that fep means “dog;” in contrast, when
familiarized with three Dalmatians, they conclude that
fep means “Dalmatian.” There are at least two straight-
forward explanations for this. First, participants might
have a tendency to use basic level categories (see Xu
& Tenenbaum, 2007b for discussion), and conclude that
the lone Dalmatian is an exemplar of the “dog.” When
shown three Dalmatians, however, they might be sur-
prised that all of the dogs are Dalmatian (e.g., because
the examples do not correspond to the most prototypical
dogs), and change their inference accordingly.

Second, Xu and Tenenbaum’s (2007b) formal expla-
nation does not provide any evidence for the size prin-
ciple either. According to their model, the likelihood of
each category given all exemplars is the product of the
likelihoods of each category given the individual exem-
plars. Importantly, one of the factors in the individual

likelihoods comes from the size principle, and is inversely
proportional to the number of items in the category. As
a result, with more exemplars, the influence of the set
size is more pronounced, and should favor smaller cate-
gories (e.g., subordinate categories if these are consistent
with the data). However, this is true for any probability
smaller than 1 that is raised to a power corresponding
to the number of exemplars.

For example, if the aforementioned similarity score is
converted to a probability score, the same qualitative
predictions follow. That is, the a priori likelihood of a
meaning is largest when the similarity between the train-
ing examples and the other items to which the meaning
applies is largest; as such, this probability score favors
small (i.e., subordinate) categories. Hence, when it is
raised to the third power (due to the three examples),
the preference for the subordinate category will be more
pronounced. As a result, what guarantees the narrowing
of the generalizations between one and three exemplars
is not the size principle but rather the rest of Xu and
Tenenbaum’s (2007b) formalism.

A similar conclusion applies to the results reported
by Navarro et al. (2012). “Narrowing” of the inferences
occurs simply due to raising probabilities to a power
corresponding to the number of examples, but not due
to the size principle per se. As such, neither Xu and
Tenenbaum’s (2007b) nor Navarro et al.’s (2012) re-
sults provide evidence for computations involving the
size principle.

Xu and Tenenbaum (2007a)

Like Xu and Tenenbaum (2007b) , Xu and Tenen-
baum (2007a) investigated the conditions under which
learners assume that a verbal label refers to a subor-
dinate category or a basic-level category, respectively.
Participants (adults and 3-to 4 year olds) were presented
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with a display showing items from two categories. The
categories were defined by their shapes, and were spa-
tially grouped together. Within each category, there
were three subordinate categories of 4 items each. Items
in different subordinate categories shared their shape,
but differed in texture.

Xu and Tenenbaum (2007a) presented two condi-
tions. In the teacher-driven condition, the experimenter
pointed to 3 items of the same subordinate category,
and labeled them with a novel word (e.g., a blicket). In
the learner-driven condition, the experimenter labeled
only 1 object, and then encouraged participants to point
to two other blickets. Results showed that all but one
participant pointed to two other items from the same
subordinate category.

Following this, participants were pointed to 5 more
objects, and asked whether these were blickets as well.
Results showed that participants in the teacher-driven
condition were more likely to infer that “blicket” ref-
ered to the subordinate category than participants in
the learner-driven condition. Xu and Tenenbaum’s
(2007a) explain the preference for the subordinate cat-
egory in the teacher-driven condition as follows. Since
the teacher knows the meaning of the word, she will
choose example objects to which this meaning applies.
Hence, due to the size principle, if all examples are con-
sistent with a subordinate category, subordinate cate-
gory should be preferred, because the number of items
in that category is lower than that in a basic-level cat-
egory. In the learner-driven condition, in contrast, the
learner does not know the meaning of the word; hence,
the size principle does not apply to favor smaller cate-
gories, such that the learner should be less likely to infer
a subordinate-level meaning than in the teacher-driven
condition.

It should first be noted that Xu and Tenenbaum’s
(2007a) do not in fact provide a test of the size prin-
ciple, because they do not manipulate the number of
items that are consistent with a hypothesis; rather the
size principle is, according to these authors, applicable
in the teacher-driven condition, but not in the learner-
driven condition. Crucially, however, Xu and Tenen-
baum’s (2007a) results are inconsistent with their con-
clusions. As mentioned above, all but one participant
in the learner-driven condition selected items from the
same subordinate category when asked to find other
blickets; given that Xu and Tenenbaum’s (2007a) model
predicts that participants in the learner-driven condition
should favor a basic-level interpretation, and that there
are more than twice as many candidate blickets from
different subordinate categories, one would expect them
to preferentially choose items from different subordinate
categories.

However, there is a simple alternative interpreta-
tion. Xu and Tenenbaum’s (2007a) claims notwith-
standing, participants clearly have a tendency to
choose a subordinate-level interpretation, maybe be-
cause they are presented with novel non-sense objects

that might not be readily assigned to conceptual cat-
egories (Callanan, Repp, McCarthy, & Latzke, 1994).
In the teacher-driven condition, participants might just
stick with this interpretation. In the learner-driven con-
dition, in contrast, they might opt for the basic-level
interpretation for purely pragmatic reasons after they
initially chose a subordinate interpretation. As men-
tioned above, participants were asked to decide which
other objects were blickets only after they had (cor-
rectly) identified two further blickets. Plausibly, the
teacher pointing to further objects, asking whether they
were blickets as well, after having successfully proposed
two blickets (at the subordinate level), might have given
participants the impression that their initial interpreta-
tion was not general enough, and that the experimenter
expected a (more general) basic-level interpretation. If
so, the difference between the teacher-driven condition
and the learner-driven condition might be due to prag-
matic factors.

Gweon et al. (2010), Denison
et al.’s (2013)

Gweon et al. (2010) presented 15-months-olds with a
transparent box containing blue and yellow balls. The
experimenter then removed a variable number of blue
balls from the box and demonstrated that they squeaked
upon squeezing them. Following this, infants were
handed a yellow ball. Gweon et al. (2010) asked how
likely infants were to conclude that this ball squeaked
as well; the dependent measure was whether, and how
often, infants would squeeze the yellow ball.

The critical manipulation was whether the majority
of the balls inside the box was blue or yellow, and how
many balls the experimenter picked from the box. In
some conditions, the experimenter extracted three blue
balls. Results showed that infants squeezed the yellow
ball more often when the three squeaky blue balls had
been extracted from a population with 75% blue balls,
than when they had been extracted from a population
with 25% blue balls. In contrast, when only one blue
ball was extracted from a population of 25% blue balls,
infants squeezed the ball as much as when three blue
balls were extracted from 75% blue balls. In a crucial
control condition, three blue balls were ostensibly drawn
by chance from the box with 25% blue balls. In that
condition, infants did not suppress squeezing the yellow
ball.

Is Gweon et al.’s (2010) model consistent with
the data?

To explain their data, Gweon et al. (2010) propose
that infants consider the four possibilities spanned by
two factors: (i) Is the teacher is cooperative and picks
the balls only from the squeaky ones, or is she nasty,
and picks from all balls irrespectively of squeakiness?
(ii) Are all balls squeaky, or only the blue ones? In-
fants would then compute likelihoods of the results of
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the experimenter’s actions according to all four possi-
ble scenarios, and compare these likelihoods to decide
whether or not to squeeze the yellow ball.1 This likeli-
hood ratio is given by, with β being the proportion of
blue balls and α being a parameter that is irrelevant for
the current purposes:

Lα =
βn

α+ (1− α)βn
, α ∈ [0, 1], β ∈]0, 1]. (1)

While this model is extremely complex, and postu-
lates important processing abilities that might or might
not be available to infants, it is inconsistent with the
data, for two reasons. First, the model always concludes
that it is more likely that only blue balls are squeaky.
In fact, it is easy to see that Lα = 1 for α = 0 or β = 1,
and that Lα < 1 for all α > 0 and β < 1. Hence, Gweon
et al.’s (2010) model predicts that infants should never
squeeze the yellow ball at all. Further, it is easy to see
that, irrespective of the proportion of blue balls, this
effect should be more pronounced when more balls are
drawn from the container, and that, eventually Lα goes
to 0.2 As a result, it seems fair to conclude that Gweon
et al.’s (2010) model does not account for the fact that
infants squeeze the yellow ball in the first place, and
rather predicts that infants should never squeeze it.

Second, the model assumes that infants desire to find
blue squeaky balls, as opposed to just desiring to find
balls that squeak irrespective of their color. Plausibly,
however, what infants really care about when squeezing
a ball is whether it squeaks. As shown in Appendix A,
an improved version of Gweon et al.’s (2010) model that
assumes that infants care about squeaky balls irrespec-
tive of their color predicts that infants should be more
likely to squeeze the yellow ball when only 25% of the
balls are blue, which is just the situation where infants
are less likely to squeeze it. (However, in contrast to
Gweon et al.’s (2010) model, the improved model ac-
counts for the fact infants squeeze the yellow ball in the
first place).

It should be noted that the failure of the improved
model does not favor Gweon et al.’s (2010) original ac-
count; after all, the alternative model correctly predicts
that infants should squeeze yellow ball, while the orig-
inal one does not. Rather, the different versions of the
model illustrate that the model behavior is not driven by
the Bayesian machinery or the size principle, but rather
by extraneous assumptions about what infants are most
interested in.

An account based on common-sense psychology

While Gweon et al.’s (2010) model is both implausi-
bly complex and inconsistent with the results, there is
a much simpler explanation. By default, infants might
have a tendency to squeeze the balls, because shape is
presumably a better predictor of function (i.e., squeak-
ing) than color (e.g., Bloom, 1996; Brown, 1990; Hauser,

1997), and because squeezing it does not entail a huge
cost. However, infants can also detect non-random be-
havior of an agent; they know that drawing three blue
balls out of a box of mostly yellow balls is unlikely
(Téglás et al., 2007), and can use this ability to detect
non-random behavior in agents (Kushnir et al., 2010).
Further, infants know that humans are often commu-
nicative and might even attempt to “teach them” (e.g.,
Csibra & Gergely, 2009). Hence, they might detect
the non-random behavior of the agent, assume that the
agent has a reason to behave in non-random ways, and
imitate her more closely only in the condition where the
agent shows clear non-random behavior. This idea ac-
counts for all of Gweon et al.’s (2010) data. A similar
account applies to Denison et al.’s (2013) data.

Conclusions

Following Tenenbaum and Griffiths (2001), the size
principle has been used to model a variety of cogni-
tive phenomena. These models are intimately linked
to Bayesian approaches to cognition. However, another
growing literature suggests that models based on psy-
chological considerations might provide a better account
for empirical data (e.g., Bowers & Davis, 2012; Endress,
2013; Jones & Love, 2011).

Here, I review the strongest evidence for the size prin-
ciple so far, and show that these experiments do not
provide any support for it. Rather, they have alterna-
tive explanations in basic psychological considerations.
As such, it appears preferable to use psychological ex-
planations of psychological phenomena rather than for-
malisms that fit the data only due to implausible as-
sumptions.

Appendix A
An improved version of Gweon

et al.’s (2010) model

The “success” of Gweon et al.’s (2010) model criti-
cally depends on an assumption about what infants care
about when they see a squeaky ball. Gweon et al. (2010)
assume that infants estimate the likelihood of observing
squeaking blue balls. However, it is plausible that they
are mostly interested the squeakiness of the balls, irre-
spective of their color. In this case, Gweon et al.’s (2010)
model predicts the opposite behavior.

1 Frank presumably claims that Gweon et al.’s (2010) data
supports the size principle because infants appear to know
that blue balls are more likely to be drawn out of a box with
a majority of blue balls than out of a box with a majority
of yellow balls (Téglás et al., 2007). However, this ability is
arguably unrelated to the ability postulated by FT, namely
to generate all events consistent with a hypothesis to choose
the more unlikely one.

2 Indeed, the partial derivative ∂nLα = αβn ln β

(α+(1−α)βn)2
is

strictly smaller than 0 since lnβ is smaller than 0 for β < 1.
Further, limn→∞ Lα = 0.
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Given a proportion β of blue balls, one can derive dif-
ferent likelihoods for the teacher picking three squeaky
blue balls. These likelihoods are presented in Figure A1.
In the two middle columns, I present the likelihoods
from Gweon et al.’s (2010) model, assuming that infants
desire blue squeaky balls. In the two right-most columns,
I present an improved model holding that infants desire
squeaky balls, but that they do not care about color.
The likelihood of picking n squeaky blues balls can be
obtained by averaging across the choice strategies of the
teacher (see Gweon et al., 2010, for a justification of this
average).

Gweon et al. (2010) compared the ratio of (i) the like-
lihood of the teacher picking three squeaky blue balls if
all balls are squeaky and (ii) the likelihood of the teacher
picking three squeaky blue balls when only the blues one
are squeaky. As mentioned above, this ratio is:

L =
2βn

1 + βn
. (2)

(Compared to equation (1), and following Gweon et
al. (2010), I set α to .5) When 75% of the balls are blue,
and the teacher picks 3 balls, the ratio is .59; when 25%
of the balls are blue, the ratio is .03. Hence, leaving
aside the fact that the model predicts that infants should
never squeeze yellow balls, they should be more likely to
squeeze yellow balls when 75% of the balls are blue.

The improved model, where infants care only about
the squeakiness of the balls, but not their color, reverses
the predictions. As can be seen from Figure A1, the
corresponding likelihood ratio is:

L′ =
2

1 + βn
. (3)

With Gweon et al.’s (2010) α parameter, the likeli-
hood ratio would be given by:

L′
α =

1

α+ (1− α)βn
. (4)

It is easy to see that L′
α = 1 for α = 1 or β = 1, and

L′
α > 1 for α < 1 and β < 1. Hence, this model accounts

for the fact that infants have a tendency to squeeze balls
irrespective of their color.3

However, when 75% of the balls are blue, the ratio
is 1.41, while it is 1.97 when 25% of the balls are blue.
Hence, the improved model (incorrectly) predicts that
infants should be more likely to squeeze yellow balls
when 25% of the balls are blue.

As mentioned above, the failure of the improved
model does not support Gweon et al.’s (2010) original
model, because the original model fails to account for
the fact that infants squeeze the yellow ball. Rather, this
models illustrate that the predictions are not driven by
Bayesian computations or the size principle, but rather

by extraneous assumptions that are also part of their
models.
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Squeaky 
balls

Teacher 
chooses among Explanation P Explanation P

only blue squeaky The hypothesis holds that only blue balls 
are squeaky, and that the teacher will only 
sample from these balls. Hence, according 
to this hypothesis, the teacher will choose 
squeaky blue balls with probablity 1.

1 The hypothesis holds that the teacher will 
only sample from squeaky balls. Hence, 
according to this hypothesis, the teacher 
will choose squeaky balls with probablity 
1.

1

only blue all Since the teacher randomly picks balls, she 
has, for each ball, a chance β for picking a 
blue/squeaky ball.

βn Since the teacher randomly picks balls, she 
has, for each ball, a chance β for picking a 
blue/squeaky ball.

βn

only blue average (1 + βn)/2 (1 + βn)/2

all squeaky While all balls are squeaky, the teacher has 
a chance of β to pick a blue ball.

βn Since all balls are squeaky, the probability 
of picking n squeaky balls is 1.

1

all all While all balls are squeaky, the teacher has 
a chance of β to pick a blue ball.

βn Since all balls are squeaky, the probability 
of picking n squeaky balls is 1.

1

all average βn 1

Infants want blue squeaky balls Infants want squeaky balls

Figure A1. Likelihoods of the teacher picking n balls of interest out of a box with a proportion of β blue balls. The middle
two columns present Gweon et al.’s (2010) model, in which infants seek blue squeaky balls. The likelihood ratio in favor of
the hypothesis that all balls are squeaky is given by 2βn/(1 + βn). The rightmost columns present an alternative model,
according to which infants just care about the squeakiness of the balls, irrespective of color. In that case, the likelihood ratio
is 2/(1 + βn).
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