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In response to the proposal that cognitive phenomena might be best understood in terms
of cognitive theories (Endress, 2013), Frank (2013) outlined an important research
program, suggesting that Bayesian models should be used as rigorous, mathematically
attractive implementations of psychological theories. This research program is important
and promising. However, I show that it is not followed in practice. I then turn to Frank’s
defense of the assumption that learners prefer more specific rules (the ‘‘size principle’’),
and show that the results allegedly supporting this assumption do not provide any support
for it. Further, I demonstrate that, in contrast to Frank’s criticisms, there is no circularity in
an account of rule-learning based on ‘‘common-sense psychology’’, and that Frank’s other
criticisms of this account are unsupported. I conclude that the research program outlined
by Frank is important and promising, but needs to be followed in practice. Be that as it
might, the rule-learning experiments discussed by Frank are still better explained by
simple psychological mechanisms.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Using Frank and Tenenbaum’s (2011) (hereafter FT)
Bayesian model of rule learning as a case study, I (Endress,
2013) proposed that such models cannot be considered
ideal-observer models but rather make important ad hoc
assumptions that determine the model behavior. Further,
I argued that a model based on simple psychological mech-
anisms explains the data better. Frank (2013) outlined a
general strategy for how Bayesian models could make
important contributions for studying cognition. While
promising and important, I show that Frank’s research pro-
gram is generally not followed in practice, and that Frank’s
criticisms of my other points and of the simple psycholog-
ical model of rule learning are unsupported by earlier
research and, therefore, unfounded (see Appendix A for
specific replies to Frank’s claims; a critical discussion of
the evidence Frank cites in support of the size principle
can be found in Endress (in review)).
2. How to use Bayesian models for studying cognition

Frank proposes that Bayesian models are well suited for
formalizing theories of cognition, by implementing
hypotheses in a framework with attractive mathematical
properties, as ‘‘Bayesian inference is ‘optimal’ in the sense
that it leads to the correct posterior distribution.’’ In other
words, using a Bayesian methodology guarantees that,
given a set of assumptions, the predictions of Bayesian
models are indeed those that follow from the assumptions.
This is a useful property, even though non-Bayesian mod-
els make the predictions that follow from their assump-
tions as well. Crucially, however, while this approach is
promising and important, I will show below that it is rarely
followed in practice, for two important reasons.

First, if Bayesian models were really used as suggested
by Frank, they would be silent on issues about whether
human information processing is optimal. While Frank
argues that Bayesian models are not used to make such
claims of optimality, he also acknowledges that many
modelers do make such claims. In fact, even FT assert that
their models reflect the ‘‘computational structure of the
task’’ (Footnote 1); if so, learners who behave according

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2013.09.003&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2013.09.003
mailto:ansgar.endress@m4x.org
http://dx.doi.org/10.1016/j.cognition.2013.09.003
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT


82 A.D. Endress / Cognition 130 (2014) 81–84
to normatively correct inferences based on the computa-
tional structure of the task presumably behave ‘‘optimally’’
as well. Hence, in many cases, Bayesian models are not
used as ideal-observer models, but rather to draw conclu-
sions that are, according to Frank, rarely justified.

The second reason relates to the goal of Bayesian mod-
els. FT (and many other Bayesian modelers) propose their
models to be higher-level models of the computational
structure of the problem that are agnostic about the under-
lying mechanisms. However, FT continuously switch be-
tween levels of description, making it difficult to decide
what the model actually describes. For example, while pre-
senting their model as an ideal-observer model, FT also
hold that infants are batch learners who remember all
familiarization items before making inferences.1 This re-
quires them to include further implementational parameters
about memory reliability, and these parameters have a sub-
stantial effect on the model behavior in turn. Hence, by con-
tinuously switching between levels of description, it
becomes extremely difficult to decide whether the model
behavior is due to the theory FT set out to test, or rather
to one of the extraneous assumptions.

This is particularly clear in FT’s use of the forgetting
rates in their simulations. For example, for theorists who,
like FT, hold that learners are guided by the size principle
and faithfully remember familiarization items, it might
be important to find out under which conditions the mod-
els account for the data, and, in fact, the models provide
rich information about this issue. In some simulations, FT
need to assume forgetting rates of 10%, in others of 40%,
in others of 60% and in still others of 80%, and the models
often do not fit the data unless such specific forgetting
rates are assumed. If, as Frank suggests, ‘‘investigating
the dependence of predictions on assumptions about per-
ceptual and memory noise is precisely the purpose of ideal
observers,’’ a plausible conclusion from the models’ fatal
dependence on very specific and mutually inconsistent
parameter values is that the models do not in fact provide
adequate accounts of the experimental data.
2 While FT acknowledged the psychological implausibility of such a
model, Frank argues that enumerating all possible triplets is not implau-
sible after all, because ‘‘research on numerical cognition suggests that
adults and infants need not enumerate to make quick and accurate
judgments about the cardinality of sets (Xu, 2002; Whalen, Gallistel, and
3. Is there evidence that learners prefer more specific
rules?

One of the crucial assumptions of FT’s models, and one
of the crucial arguments of Frank’s reply, is that learners
preferentially learn more specific rules (the ‘‘size princi-
ple’’). As I pointed out, the size principle has sound justifi-
cations in the case of language acquisition (e.g., Hyams,
1986; Manzini & Wexler, 1987), but its use by FT is partic-
ularly implausible. Specifically, in FT’s model, infants
might encounter a total of three syllables. Before encoun-
tering any syllable triplet, infants know that the three syl-
1 Indeed, FT ‘‘distinguished the larger memory demands involved in
maintaining a representation of training items across a long exposure
period compared with an individual evaluating test items in the moment’’.
However, if the memory demands are different in different parts of the
experiment, memory is necessarily used in the process of the generaliza-
tions. As a result, infants must be batch learners who remember all
familiarization items (more or less faithfully according to the memory
parameter).
lables allow for a total 27 triplets, that 6 of these triplets
follow an ABB pattern (e.g., pu-li-li), that 3 of these triplets
follow an AAA pattern (where all three syllables are iden-
tical), as well as the number of triplets that would conform
to any conceivable rule. Unless infants have innate knowl-
edge of the number of items compatible with any conceiv-
able rule and any conceivable number of syllables, FT’s
models suggest that infants have to process about 900
hypothetical and counterfactual triplets per second. This
assumption lies at the core of FT’s model. Hence, if it is
unsupported, the model become unsupported as well.2

While Frank claims that several papers support the size
principle, most of the data presented in these papers is
unrelated to the size principle, confounded by other fac-
tors, can be fit by more plausible models that make no
use of the size principle, or is inconsistent with the models
it is allegedly predicted by. A critical discussion of these
papers can be found elsewhere (Endress, in review). Fur-
ther, even if these results supported some version of the
size principle, they would not support FT’s models, because
participants could estimate the size of classes based on
stimuli they actually saw, and not on hundreds of thou-
sands of hypothetical and counterfactual stimuli they
never experienced.

Given the absence of evidence for the size principle as
used by FT, I ran an experiment illustrating the fact that
the size principle cannot be taken for granted. Participants
were presented with a sequence of syllable triplets con-
forming to a repetition-pattern (e.g., wo-fe-fe). Following
this, they had to choose between triplets of rhesus monkey
vocalizations conforming to the pattern, and triplets of hu-
man syllables violating the pattern. As a result, they could
choose between the more specific repetition-pattern, and
the less specific ‘‘all items are made of syllables’’ regularity.
Importantly, FT’s incorporated both types of rules; hence,
this experiment compared the predictions of FT’s model
to the behavior of actual participants. However, results
showed that most participants chose the less specific ‘‘all
items are made of syllables’’ regularity.

Frank dismisses these data, arguing that they ‘‘do not
provide evidence against the size principle.’’ However, this
was not the point of the experiments. Rather, I argued that
they ‘‘fail to support the predictions of Frank and Tenen-
baum (2011)’s model and demonstrate that a preference
for more specific patterns cannot be taken for granted,’’
and that the size principle can be easily overwritten by
other stimulus properties. Hence, Frank’s claims notwith-
Gelman, 1999).’’ However, participants in number cognition experiments
have to process maybe up to 100 dots on a screen, but usually much fewer,
and certainly not hundreds of thousands of items as in FT’s simulations.
Further, and crucially, observers in numerical cognition tasks see the
objects they have to enumerate; in contrast, in FT’s simulations, the triplets
to be enumerated are hypothetical and counterfactual. It seems fair to
assume that observers cannot estimate the number of dots on displays they
are never shown. Likewise, there is no evidence that participants can
‘‘count’’ the number of triplets they never hear. As a result, the number
processing literature provides no support for FT’s models.



A.D. Endress / Cognition 130 (2014) 81–84 83
standing, there is no evidence for the central assumption of
FT’s models, which, therefore, remains speculative and
psychologically implausible.
4. Common sense psychology does account for the data

An alternative approach to rule-learning can be based
on perceptual or memory primitives (Endress, Scholl, &
Mehler, 2005; Endress, Dehaene-Lambertz, & Mehler,
2007; Endress, Nespor, & Mehler, 2009). Frank criticizes
this account for being circular, because it does not specify
which patterns learners might pick up. He gives the exam-
ple that, when presented with syllable triplets conforming
to a repetition-pattern, participants might well learn gen-
eralizations ‘‘like ‘any string that ends in /di/, /je/, /li/, or
/we/’ or ‘any string with three or four elements.’ ’’

However, the circularity results from a confusion be-
tween the patterns that are learned, and those that are
tested. In fact, to the extent that infants can detect the
number of sounds (or properties with which the number
of sounds might be confounded; see Starkey, Spelke, &
Gelman, 1983; Starkey, Spelke, & Gelman, 1990, but see
Lipton & Spelke, 2004), they will do so also in rule-learning
experiments. Likewise, Gerken’s (2010) data clearly show
that infants can learn a regularity of the sort ‘‘any string
that ends in /di/’’, and adults can, at least after many more
familiarization examples, learn regularities of the sort ‘‘any
string that ends in /di/, /je/, /li/, or /we/’’ as well (Endress &
Mehler, 2009). However, such abilities were simply not
tested in these experiments.

In fact, the psychological account does not need to make
arbitrary assumptions. The question of which hypotheses
infants can and do entertain is simply an empirical one.
Likewise, infants’ behavior will plausibly be mostly driven
by the most salient patterns; the relative saliency of differ-
ent pattern is an empirical question, and can be tested by
pitting patterns against each other (see Gervain & Endress,
in preparation). Of course, such an approach does not
answer the question of why infants entertain some hypoth-
eses, or why some patterns are more salient than others.
However, while FT propose an answer to such questions,
their explanation either makes incorrect predictions, or
does not account for the data to be explained in the first
place.
3 For example, with 18 tones, participants should perform about 42%
better on the repetition patterns than on the rising and falling contours.
This model behavior is expected, as it is easy to calculate that the rising/
falling regularity is less specific than the repetition pattern for 9 tones or
more.
5. Conclusions

Frank proposes an important step forward in the use of
Bayesian models to study cognition, namely to use them to
refine hypotheses and make testable predictions. If this
were how Bayesian models are used in practice, Franks
proposal could become an important tool for developing
psychological theories of psychological phenomena and
to ground them in empirical research.
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Appendix A. Responses to specific responses

In his Appendix A, Frank comments on some of my
more specific criticisms of FT’s models. I will briefly com-
ment on his responses in turn. As pointed out by Frank,
many of the criticism were related to the lack of evidence
for the size principle, and the associated implausibility of
the model. As discussed above, there still is no such
evidence.

Regarding Endress et al.’s (2007) data, FT reproduced
the performance difference between repetition-patterns
and ‘‘ordinal’’ patterns, arguing that it might be due to
the fact that, in the case of the ordinal patterns, ‘‘a number
of possible rules were consistent with the training stimuli’’
(p. 365). If so, one would expect the same difficulties with
simple rising or falling contours such as ‘‘lowest–middle–
highest.’’ I showed that this is not the case, and that most
participants are at ceiling learning rising or falling
contours. However, Frank’s new simulations show that
raising and falling contours are learned better than ordinal
patterns. Still, further simulations revealed that, if, as in FT,
one treats the relative surprisal for incorrect vs. correct test
item as a measure of performance on the test items and
uses FT’s model parameters, the model predicts that per-
formance for repetition-patterns should be about 20% bet-
ter than for rising or falling contours for the number of
tones used by Endress et al. (2007), and can be made arbi-
trarily large simply by changing the number of tones from
which the triplets are constructed.3 Given that most partic-
ipants were at ceiling with the rising and falling contours,
the data contradict this prediction. Hence, the conclusion
is inevitable that FT’s models reproduced Endress et al.’s
(2007) results due to assumptions that are empirically
incorrect.

Regarding Gerken’s (2010) data, Frank acknowledges
that the model’s ability to learn from a few examples
results in the prediction that humans should unlearn a rule
from a single counter-example, even after thousands of
positive examples. While Frank argues that this is a
short-coming of the models that can be fixed, this ‘‘short-
coming’’ is actually the reason for which the model
accounted for the data in the first place.

Regarding Gómez’s (2002) results, Frank acknowledges
that the model fails to account for the data, but argues that
this can be addressed in further work. However, given that,
according to Frank, this revolves around the interpretation
of one of their parameters, it is unclear why FT introduced
a parameter with no clear interpretation in the first place.

Regarding Kovács and Mehler’s (2009) data, Frank ar-
gues that ideal-observer are not opposed to process mod-
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els, even though FT’s ideal observer model makes no con-
tact whatsoever with well-established process-based
explanation. Specifically, Kovács and Mehler (2009)
showed that bilingual infants can learn multiple regulari-
ties while monolinguals can learn only one, an ability that
has been linked to the better developed executive function
in bilinguals. FT modified their model to be more likely to
admit more than one regularity, found that it was indeed
more likely to learn more than one regularity, and con-
clude that bilinguals are somehow designed to be more
likely to admit more than one regularity as well. Further,
they postulate that bilingual advantages in tasks such as
the Stroop task are a consequence of being more likely to
learn multiple regularities as well, with no supporting evi-
dence whatsoever, despite the prima facie implausibility of
this claim.
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